Refine Your Search

Topic

Search Results

Technical Paper

A 2-D Computational Model Describing the Flow and Filtration Characteristics of a Ceramic Diesel Particulate Trap

1998-02-23
980545
A 2-D computational model was developed to describe the flow and filtration processes, in a honeycomb structured ceramic diesel particulate trap. This model describes the steady state trap loading, as well as the transient behavior of the flow and filtration processes. The theoretical model includes the effect of a copper fuel additive on trap loading and transient operation. The convective terms were based on a 2-D analytical flow field solution derived from the conservation of mass and momentum equations. The filtration theory incorporated in the time dependent numerical code included the diffusion, inertia, and direct interception mechanisms. Based on a measured upstream particle size distribution, using the filtration theory, the downstream particle size distribution was calculated. The theoretical filtration efficiency, based on particle size distribution, agreed very well (within 1%) with experimental data for a number of different cases.
Technical Paper

A 2-D Computational Model Describing the Heat Transfer, Reaction Kinetics and Regeneration Characteristics of a Ceramic Diesel Particulate Trap

1998-02-23
980546
A 2-D CFD model was developed to describe the heat transfer, and reaction kinetics in a honeycomb structured ceramic diesel particulate trap. This model describes the steady state as well as the transient behavior of the flow and heat transfer during the trap regeneration processes. The trap temperature profile was determined by numerically solving the 2-D unsteady energy equation including the convective, heat conduction and viscous dissipation terms. The convective terms were based on a 2-D analytical flow field solution derived from the conservation of mass and momentum equations (Opris, 1997). The reaction kinetics were described using a discretized first order Arrhenius function. The 2-D term describing the reaction kinetics and particulate matter conservation of mass was added to the energy equation as a source term in order to represent the particulate matter oxidation. The filtration model describes the particulate matter accumulation in the trap.
Technical Paper

A Study of the Effect of a Catalyzed Particulate Filter on the Emissions from a Heavy-Duty Diesel Engine with EGR

2001-03-05
2001-01-0910
The effects of a catalyzed particulate filter (CPF) and Exhaust Gas Recirculation (EGR) on heavy-duty diesel engine emissions were studied in this research. EGR is used to reduce the NOx emissions but at the same time it can increase total particulate matter (TPM) emissions. CPF is technology available for retrofitting existing vehicles in the field to reduce the TPM emissions. A conventional low sulfur fuel (371 ppm S) was used in all the engine runs. Steady-state loading and regeneration experiments were performed with CPF I to determine its performance with respect to pressure drop and particulate mass characteristics at different engine operating conditions. From the dilution tunnel emission characterization results for CPF II, at Mode 11 condition (25% load - 311 Nm, 1800 rpm), the TPM, HC and vapor phase emissions (XOC) were decreased by 70%, 62% and 62% respectively downstream of the CPF II.
Technical Paper

A Study of the Filtration and Oxidation Characteristics of a Diesel Oxidation Catalyst and a Catalyzed Particulate Filter

2007-04-16
2007-01-1123
An experimental and modeling study was conducted to study the passive regeneration of a catalyzed particulate filter (CPF) by the oxidation of particulate matter (PM) via thermal and Nitrogen dioxide/temperature-assisted means. Emissions data in the exhaust of a John Deere 6.8 liter, turbocharged and after-cooled engine with a low-pressure loop EGR and a diesel oxidation catalyst (DOC) - catalyzed particulate filter (CPF) in the exhaust system was measured and used for this study. A series of experiments was conducted to evaluate the performance of the DOC, CPF and DOC+CPF configurations at various engine speeds and loads.
Technical Paper

A Study of the Regeneration Process in Diesel Particulate Traps Using a Copper Fuel Additive

1996-02-01
960136
The goals of this research are to understand the regeneration process in ceramic (Cordierite) monolith traps using a copper fuel additive and to investigate the various conditions that lead to trap regeneration failure. The copper additive lowers the trap regeneration temperature from approximately 500 °C to 375 °C and decreases the time necessary for regeneration. Because of these characteristics, it is important to understand the effect of the additive on regeneration when excessive particulate matter accumulation occurs in the trap. The effects of particulate mass loading on regeneration temperatures and regeneration time were studied for both the controlled (engine operated at full load rated speed) and uncontrolled (trap regeneration initiated at full load rated speed after which the engine was cut to idle) conditions. The trap peak temperatures were higher for the uncontrolled than the controlled regeneration.
Technical Paper

Advances in Quantitative Analytical Ferrography and the Evaluation of a High Gradient Magnetic Separator for the Study of Diesel Engine Wear

1982-02-01
821194
Several sources of variation in quantitative analytical ferrography are investigated. A standard ferrography analysis procedure is developed. Normalization of ferrographic data to account for the amount of oil used to make the ferrograms is discussed. Procedures to minimize the errors involved with calculating three quantitative ferrography parameters: the area covered by the large particles, AL (%/ml of oil), the area covered by the small particles, AS (%/ml of oil) and Area Under the Curve, AUC, (%-mm/ml of oil) are outlined. Ferrographic data are presented which show that the volume and dilution ratio of the oil sample being analyzed have a major effect on the accuracy of the analysis. Several variables which influence the area covered readings of the particle deposit on a ferrogram are discussed. The accuracy of quantitative analytical ferrography is assessed.
Technical Paper

An Experimental Investigation into Particulate Matter Oxidation in a Catalyzed Particulate Filter with Biodiesel Blends on an Engine during Active Regeneration

2013-04-08
2013-01-0521
Active regeneration experiments were carried out on a production 2007 Cummins 8.9L ISL engine and associated diesel oxidation catalyst (DOC) and catalyzed particulate filter (CPF) aftertreatment system. The effects of SME biodiesel blends were investigated to determine the particulate matter (PM) oxidation reaction rates for active regeneration. The experimental data from this study will also be used to calibrate the MTU-1D CPF model [1]. The experiments covered a range of CPF inlet temperatures using ULSD, B10, and B20 blends of biodiesel. The majority of the tests were performed at a CPF PM loading of 2.2 g/L with in-cylinder dosing, although 4.1 g/L and a post-turbo dosing injector were also investigated. The PM reaction rate was shown to increase with increasing percent biodiesel in the test fuel as well as increasing CPF temperature.
Technical Paper

An Experimental Study of Particulate Thermal Oxidation in a Catalyzed Filter During Active Regeneration

2009-04-20
2009-01-1474
Active regeneration experiments were performed on a Cummins 2007 aftertreatment system by hydrocarbon dosing with injection of diesel fuel downstream of the turbocharger. The main objective was to characterize the thermal oxidation rate as a function of temperature and particulate matter (PM) loading of the catalyzed particulate filter (CPF). Partial regeneration tests were carried out to ensure measureable masses are retained in the CPF in order to model the oxidation kinetics. The CPF was subsequently re-loaded to determine the effects of partial regeneration during post-loading. A methodology for gathering particulate data for analysis and determination of thermal oxidation in a CPF system operating in the engine exhaust was developed. Durations of the active regeneration experiments were estimated using previous active regeneration work by Singh et al. 2006 [1] and were adjusted as the experiments progressed using a lumped oxidation model [2, 3].
Technical Paper

An Experimental and Modeling Study of a Diesel Oxidation Catalyst and a Catalyzed Diesel Particulate Filter Using a 1-D 2-Layer Model

2006-04-03
2006-01-0466
Modeling of diesel exhaust after-treatment devices is a valuable tool in the development and performance evaluation of these devices in a cost effective manner. Results from steady state loading experiments on a catalyzed particulate filter (CPF) in a Johnson Matthey CCRT®, performed with and without the upstream diesel oxidation catalyst (DOC) are described in this paper. The experiments were performed at 20, 40, 60 and 75% of full load (1120 Nm) at rated speed (2100 rpm) on a Cummins ISM 2002 heavy duty diesel engine. The data obtained were used to calibrate one dimensional (1-D) DOC and CPF models developed at Michigan Technological University (MTU). The 1-D 2-layer single channel CPF model helped evaluate the filtration and passive oxidation performance of the CPF. DOC modeling results of the pressure drop and gaseous emission oxidation performance using a previously developed model are also presented.
Technical Paper

CRC Evaluation of Techniques for Measuring Hydrocarbons in Diesel Exhaust-Phase IV

1975-02-01
750203
In 1972 and 1973, the CRC-APRAC Program Group on Diesel Exhaust carried out a fourth program to evaluate techniques for measuring concentration of hydrocarbon in diesel exhaust. The first two programs were conducted in 1967 and 1968. In them, a single cylinder diesel engine was shipped among 13 laboratories and each laboratory measured hydrocarbon emissions by their own method. Agreement among laboratories (instruments) was poor in both programs. The third program was conducted in 1970 at one laboratory on one engine. This time, agreement among instruments was much improved from the earlier programs. The fourth program was conducted to confirm these later results. In it, a multi-cylinder diesel generating set was circulated among 15 participating laboratories, and each laboratory measured exhaust hydrocarbon by methods that complied with SAE Recommended Practice J215, “Continuous Hydrocarbon Analysis of Diesel Exhaust.”
Technical Paper

Catalyzed Particulate Filter Passive Oxidation Study with ULSD and Biodiesel Blended Fuel

2012-04-16
2012-01-0837
A 2007 Cummins ISL 8.9L direct-injection common rail diesel engine rated at 272 kW (365 hp) was used to load the filter to 2.2 g/L and passively oxidize particulate matter (PM) within a 2007 OEM aftertreatment system consisting of a diesel oxidation catalyst (DOC) and catalyzed particulate filter (CPF). Having a better understanding of the passive NO₂ oxidation kinetics of PM within the CPF allows for reducing the frequency of active regenerations (hydrocarbon injection) and the associated fuel penalties. Being able to model the passive oxidation of accumulated PM in the CPF is critical to creating accurate state estimation strategies. The MTU 1-D CPF model will be used to simulate data collected from this study to examine differences in the PM oxidation kinetics when soy methyl ester (SME) biodiesel is used as the source of fuel for the engine.
Technical Paper

Ceramic Particulate Traps for Diesel Emissions Control - Effects of a Manganese-Copper Fuel Additive

1988-02-01
880009
The effect of the use of a manganese-copper fuel additive with a Corning EX-47 particulate trap on heavy-duty diesel emissions has been investigated; reductions in total particulate matter (70%), sulfates (65%), and the soluble organic fraction (SOF) (62%) were measured in the diluted (15:1) exhaust and solids were reduced by 94% as measured in the raw exhaust. The use of the additive plus the trap had the same effect on gaseous emissions (hydrocarbons and oxides of nitrogen) as did the trap alone. The use of the additive without the trap had no effect on measured gaseous emissions, although sulfate increased by 20%. Approximately 50% of the metals added to the fuel were calculated to be retained in the engine system. The metals emitted by the engine were collected very efficiently (>97%) by the trap even during regeneration, which occured 180°C lower when the additive was used.
Technical Paper

Collection and Characterization of Particulate and Gaseous-Phase Hydrocarbons in Diesel Exhaust Modified by Ceramic Particulate Traps

1987-02-01
870254
Protocols for sampling and analysis of particulate and gaseous-phase diesel emissions were developed to characterize the chemical and biological effects of using ceramic traps as particulate control devices. A stainless-steel sampler was designed, constructed, and tested with XAD-2 sorbent for the collection of volatile organic compounds (VOC). Raw exhaust levels of TPM and SOF and mutagenicity of the SOF and VOC were all reduced when the traps were used. Hydrocarbon mass balances indicated that some hydrocarbons were not collected by the sampling system and that the proportions of collected SOF and VOC were altered by the use of the traps. SOF hydrocarbons appeared to be derived mainly from engine lubricating oil; VOC hydrocarbons were apparently fuel-derived. There was no apparent effect on SOF mutagenicity due to either sampling time or reexposure of particulate to exhaust gases.
Technical Paper

Cooperative Evaluation of Techniques for Measuring Diesel Exhaust Odor Using the Diesel Odor Analysis System (DOAS)

1980-02-01
800422
The CRC-APRAC CAPI-1-64 Odor Panel was formed in 1973 to assess an instrumental measurement system for diesel exhaust odor (DOAS) developed under CRC-APRAC CAPE-7-68 by Arthur D. Little, Inc. Four cooperative studies were conducted by nine participating laboratories using common samples. The objectives of these studies were to define the DOAS system variables and to validate and improve the sampling and collection procedures. A fifth study, serving as a review of each analysis step, showed that analysis of common derived odorant samples could be conducted within acceptable limits by the participating laboratories. Three in-house sampling system design and operating parameter studies were conducted simultaneously with the cooperative work. The combined findings from the in-house and cooperative studies led to a tentative recommended procedure for measuring diesel exhaust odor.
Technical Paper

Cooperative Evaluation of Techniques for Measuring Hydrocarbons in Diesel Exhaust (A CRC Report)

1971-01-11
710218
Methods available for measuring hydrocarbons in diesel exhaust were evaluated by the CRC-APRAC Program Group on Diesel Exhaust Composition during 1967-1970. Early tests showed distressingly large variations from instrument to instrument and undesirably large variations among repeated measurements by one instrument. Instrument quality and operator competence were better in later tests and agreement among instruments was relatively good and errors within instruments were small. Current techniques appear acceptable for engineering measurements. No further cooperative work is planned by CRC at present, but techniques for measuring hydrocarbons in diesel exhaust will be reappraised periodically.
Technical Paper

Cooperative Evaluation of Techniques for Measuring Nitric Oxide and Carbon Monoxide (Phase IV Tests)

1975-02-01
750204
This is the fourth in a series of tests conducted as a Coordinating Research Council cooperative program to evaluate the measurement methods used to analyze diesel exhaust gas constituents. A multi-cylinder engine was circulated to 15 participants who measured emissions at three engine conditions. All 15 participants measured nitric oxide and carbon monoxide with several laboratories measuring nitric oxide by both NDIR (Non-Dispersive Infrared) and CHEMI (Chemiluminescence). Some participants also measured carbon dioxide, nitrogen dioxide, oxygen, and unknown span gases. The test results are compared with the Phase III cooperative tests which involved simultaneous measurement of emissions by participants. The precision of the results was poorer in Phase IV than Phase III.
Technical Paper

Cooperative Evaluation of Techniques for Measuring Nitric Oxide and Carbon Monoxide - A Report of the Program Group on Diesel Exhaust Composition of the Air Pollution Advisory Committee of the Coordinating Research Council, Inc.

1972-02-01
720104
A Coordinating Research Council cooperative program was conducted to evaluate the measurement methods used to analyze nitric oxide and carbon monoxide in diesel exhaust. Initially, a single-cylinder test engine was circulated among participants with poor results. Tests were then conducted at one site using a multicylinder diesel engine. Six organizations participated in the program. Exhaust analyses were conducted at steady-state engine conditions and on a 3 min cycle test. Span gases of unknown concentration were also analyzed. The participants results varied but averaged less than ±5% standard deviation both within (repeatability) and among (reproducibility) the instruments. The short cycle test was in good agreement with the steady-state measurements. No significant difference in the use of Drierite, nonindicating Drierite, or Aquasorb desiccants was evident in sampling system tests.
Technical Paper

Cooperative Study of Heavy Duty Diesel Emission Measurement Methods

1978-02-01
780112
A cooperative test program was conducted by the CRC-APRAC CAPI-1-64 Composition of Diesel Exhaust Program Group to evaluate the technical aspects of a proposed EPA recommended Heavy Duty Diesel Emission Measurement and Test Procedure. The proposed changes affected the sampling configurations and the types of instruments used. Six participants studied the effects of a number of variables on the proposed changes and evaluated some alternative systems that included both CHEMI and NDIR instruments. The tests were conducted at one site using a multi-cylinder engine operating on the 13-Mode Cycle. Equivalency of systems was demonstrated and the best performance was obtained with a special NDIR system.
Journal Article

Deposit Formation in Urea-SCR Systems

2009-11-02
2009-01-2780
Formation of urea injection related deposits in a heavy-duty urea-SCR system was studied using an engine lab setup. The exhaust system was instrumented with thermocouples to track temperature changes caused by the liquid spray. Impact of operating parameters (exhaust and ambient temperature, urea solution injection rate) and system design modification (insulation, wiremesh insert) on the temperature profiles and deposit quantities was studied. Deposits were found in all tests conducted under typical exhaust temperatures. Deposition rate increased with lower exhaust and ambient temperature, and with higher injection rate. Mixer insulation and wiremesh upstream of the mixer reduced the deposits.
Technical Paper

Direct Injection into the Exhaust Stream of Gaseous Ammonia: Design and Efficiency of Injection and Mixing Hardware

2015-04-14
2015-01-1021
Current legislative trends regarding diesel emissions are striving to achieve two seemingly competing goals: simultaneously lowering NOx and greenhouse gas (GHG) emissions. These two goals are considered at odds since lower GHG emissions (e.g. CO2) is achieved via high combustion efficiency that result in higher engine out NOx emissions and lower exhaust gas temperatures [1, 2]. Conversely, NOx reduction technologies such as SCR require temperatures above 200°C for dosing the reductant (DEF) [3, 4, 5] as well as for high conversion efficiencies [1, 2, 6, 7, 8, 9]. Dosing DEF requires injection pressures around 5 bar to ensure proper penetration into the exhaust stream as well as generate the appropriate spray pattern and droplet sizes. Dosing DEF generally requires long mixing and/or high turbulence (high restriction) areas so that the aqueous urea solution can be converted into gaseous NH3 without deposit formation [8, 10, 11, 12, 13, 14, 15].
X