Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Effects of Geometric Parameters on the Sound Transmission Characteristic of Bulb Seals

2003-05-05
2003-01-1701
Sound transmission through door and window sealing systems is one important contributor to vehicle interior noise. The noise generation mechanism involves the vibration of the seal due to the unsteady wall pressures associated with the turbulent flow over the vehicle. For bulb seals, sound transmission through the seal is governed by the resonance of the seal membranes and the air cavity within the bulb (the so-called mass-air-mass resonance). The objective of this study was to develop a finite element (FE) model to predict the sound transmission loss of elastomeric bulb seals. The model was then exercized to perform a parametric study of the influence of seveal seal design parameters. The results suggest that the sound transmission loss increases as the membrane thicknesses and/or the separation distance between the two seal walls are increased. The addition of additional internal “webs” was found to have adverse effects on the sound barrier performance.
Technical Paper

Effects of Window Seal Mechanical Properties on Vehicle Interior Noise

2003-05-05
2003-01-1703
One dominant “wind noise” generating mechanism in road vehicles is the interaction between turbulent flows and flexible structures which include side glass windows. In this study, the effects of seal mechanical properties on the sound generated from flow-induced vibration of side glass windows were investigated. The primary goal was to assess the influence of seal support properties on the noise generated from a plate. Two different models to calculate the optimal support stiffness of the seal that minimizes the velocity response are presented. The results show that both the velocity response and the sound radiation are strongly influenced by dissipation of vibration energy at the edges. It is demonstrate that support tuning can yield significant noise and vibration reduction.
Journal Article

Feedforward Harmonic Suppression for Noise Control of Piezoelectrically Driven Synthetic Jet Actuators

2023-05-08
2023-01-1042
Piezoelectrically driven Synthetic Jet Actuators (SJAs) are a class of pulsatile flow generation devices that promises to improve upon steady forced cooling methods in air flow generation, surface cleaning and heat transfer applications. Their acoustic emissions and vibrations, an intrinsic by-product of their operation, needs to be mitigated for applications in noise-sensitive contexts. Already used for aerodynamic control [1, 2], thrust vectoring [3], spray control [4], and heat transfer [5, 6], they are increasingly being considered for sensor lens cleaning in automobiles. In this study, the sound generation mechanisms of SJAs are discussed and an active noise reduction method is proposed and evaluated. Driven with a single frequency sinusoidal input, SJAs produce acoustic emissions at harmonic frequencies within the frequency range of speech communication.
Technical Paper

Modeling and Parameterization Study of Fuel Consumption and Emissions for Light Commercial Vehicles

2014-03-24
2014-01-2020
This paper describes the effects of diverse driving modes and vehicle component characteristics impact on fuel efficiency and emissions of light commercial vehicles. The AVL's vehicle and powertrain system level simulation tool (CRUISE) was adopted in this study. The main input data such as the fuel consumption & emission map were based on the experimental value and vehicle components characteristic data (full load characteristic curves, gear shifting position curves, torque conversion curve etc.) and basic specifications (gross weight, gear ratio, tire radius etc.) were used based on the database or suggested value. The test database for two diesel vehicles adopted whether prediction accuracy of simulation data were converged in acceptable range. These data had been acquired from the portable emission measurement system, the exhaust emission and operating conditions (engine speed, vehicle speed, pedal position etc.) were acquired at each time step.
Technical Paper

Simulation of Friction-Induced Vibrations of Window Sealing Systems

2007-05-15
2007-01-2268
In this study, friction-induced vibrations of the window sealing system of a vehicle were investigated using a detailed numerical model. A lumped element, single-degree-of-freedom model was first developed for verification of the numerical procedures. An approximate expression for the frequency of the stick-slip oscillations was obtained. The model indicated that the frequency decreased as the normal force and the difference between the static and kinetic friction coefficients were increased. Stick-slip oscillations were then simulated using a finite element model of a glass run seal using an explicit time marching method. The motion of the seal during the slipping phase was in the direction of the friction force. The peak frequency was found to vary according to the glass position on the seal surface. The results indicated that both the periods of the stick and slip phases of the seal motion affect the frequency of the stick-slip oscillations.
Technical Paper

Surface Pressure Fluctuations in Separated-Reattached Flows Behind Notched Spoilers

2007-05-15
2007-01-2399
Notched spoilers may be used to suppress flow-induced cavity resonance in vehicles with open sunroofs or side windows. The notches are believed to generate streamwise vortices that break down the structure of the leading edge cross-stream vortices predominantly responsible for the cavity excitation. The objectives of the present study were to gain a better understanding of the buffeting suppression mechanisms associated with notched spoilers, and to gather data for computational model verification. To this end, experiments were performed to characterize the surface pressure field downstream of straight and notched spoilers mounted on a rigid wall to observe the effects of the notches on the static and dynamic wall pressure. Detailed flow velocity measurements were made using hot-wire anemometry. The results indicated that the presence of notches on the spoiler reduces drag, and thus tends to move the flow reattachment location closer to the spoiler.
X