Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Effects of Notches on Surface Pressure Fluctuations Downstream of a Leading Edge Spoiler

2009-05-19
2009-01-2238
Notched spoilers have been observed to be more effective than uniform spoilers to suppress the flow-induced cavity resonance of vehicles with open sunroofs. In this study, a few mechanisms possibly involved in buffeting suppression from notched spoilers were investigated experimentally and numerically. One objective was to investigate the spatial coherence and phase of the wall pressure fluctuations downstream of notched spoilers in comparison with the same quantities for uniform spoilers. Another objective was to gather detailed measured data to allow the verification of computer simulations of the flow over the notched spoiler. Experiments were performed to measure the velocity and wall pressure fields downstream of spoilers mounted on the rigid floor of a closed test section wind tunnel for different spoiler heights. Efforts were made to reproduce the spoiler and wind tunnel geometry and boundary conditions of the experimental set-up in the numerical simulations.
Technical Paper

Laboratory Method for Evaluating the Sound Transmission Characteristics of Primary Bulb Body Seals

1996-02-01
960193
A laboratory method was developed to evaluate the sound transmission characteristics of road vehicle body seals. Primary bulb seal samples were mounted in a fixture which approximated the geometry of a typical door-gap cavity. The seal fixture was integrated with a rigid panel into the floor of a quiet, low-speed, closed test-section wind tunnel. Flow-excited pressure fluctuations in the door-gap cavity were induced by the air stream instead of by sound waves in a quiescent environment as in standard transmission loss measurements. A soundproof anechoic enclosure located underneath the test-section floor isolated the sound receiver. The sound level reduction between the cavity pressure and the sound pressure into the enclosure, a quantity directly related to the sound transmission loss (TL) in this case, was measured accurately between the 1250 and 5000 Hz one-third octave bands.
Technical Paper

Sunroof Buffeting of a Simplified Car Model: Simulations of the Acoustic and Flow-induced Responses

2005-05-16
2005-01-2498
Sunroof buffeting of a simplified car model was investigated experimentally and numerically in order to assess the potential of numerical methods to design sunroofs that are quiet and functional. The numerical results have been obtained using the commercially available software PowerFLOW. The simulation kernel of this software is based on the numerical scheme known as the Lattice Boltzmann Method (LBM), combined with an RNG turbulence model. This scheme accurately captures time-dependent aerodynamic behavior of high Reynolds number flows over complex geometries, together with the acoustic response of resonant systems. In this work, a simplified car model with a sunroof was used for validation. A simulation methodology to determine the acoustic response of the passenger cabin was investigated and verified experimentally. The sunroof buffeting phenomenon was simulated over a range of flow conditions, and the results were found to be in good agreement with experimental data.
X