Refine Your Search

Search Results

Viewing 1 to 20 of 20
Technical Paper

A Lean Burn Gasoline Fueled Pre-Chamber Jet Ignition Combustion System Achieving High Efficiency and Low NOx at Part Load

2012-04-16
2012-01-1146
Turbulent Jet Ignition is an advanced spark-initiated pre-chamber combustion system for otherwise standard spark ignition engines. Combustion in the main chamber is initiated by jets of partially combusted (reacting) pre-chamber products which provide a high energy ignition source. The resultant widely distributed ignition sites allow relatively small flame travel distances enabling short combustion durations and high burn rates. Demonstrated benefits include ultra lean operation (λ≻2) at part load and high load knock limit extension. Previous jet ignition experimental results have highlighted high thermal efficiencies, high load capability and near-zero engine-out NOx emissions in a standard contemporary engine platform. Although previous results of this system have been very promising, the main hurdle has been the need for a dual fuel system, with liquid gasoline used in the main combustion chamber and small fractions of gaseous propane in the pre-chamber.
Technical Paper

A New Combustion System Achieving High Drive Cycle Fuel Economy Improvements in a Modern Vehicle Powertrain

2011-04-12
2011-01-0664
Turbulent Jet Ignition is an advanced spark initiated pre-chamber combustion system for otherwise standard spark ignition engines found in current passenger vehicles. This next generation pre-chamber design simply replaces the spark plug in a conventional spark ignition engine. Turbulent Jet Ignition enables very fast burn rates due to the ignition system producing multiple, widely distributed ignition sites, which consume the main charge rapidly. This high energy ignition results from the partially combusted (reacting) pre-chamber products initiating combustion in the main chamber. The distributed ignition sites enable relatively small flame travel distances enabling short combustion durations and high burn rates. Multiple benefits include extending the knock limit and initiating combustion in very dilute mixtures (excess air and or EGR), with dilution levels being comparable to other low temperature combustion technologies (HCCI), without the complex control drawbacks.
Journal Article

A Single Fuel Pre-Chamber Jet Ignition Powertrain Achieving High Load, High Efficiency and Near Zero NOx Emissions

2011-08-30
2011-01-2023
Turbulent Jet Ignition is an advanced spark initiated pre-chamber combustion system for otherwise standard spark ignition engines found in current passenger vehicles. This next generation pre-chamber design simply replaces the spark plug in a conventional spark ignition engine. Turbulent Jet Ignition enables very fast burn rates due to the ignition system producing multiple, widely distributed ignition sites, which consume the main charge rapidly. This high energy ignition results from the partially combusted (reacting) pre-chamber products initiating combustion in the main chamber. The distributed ignition sites enable relatively small flame travel distances enabling short combustion durations and high burn rates. Multiple benefits include extending the knock limit and initiating combustion in very dilute mixtures (excess air and/or EGR), with dilution levels being comparable to other low temperature combustion technologies (HCCI), without the complex control drawbacks.
Journal Article

A Study of Gasoline-Alcohol Blended Fuels in an Advanced Turbocharged DISI Engine

2009-04-20
2009-01-0138
This work was concerned with evaluation of the performance and emissions of potential future biofuels during advanced spark ignition engine operation. The fuels prepared included three variants of gasoline, three gasoline-ethanol blends and a gasoline-butanol fuel altogether covering a range of oxygen mass concentrations and octane numbers to identify key influencing parameters. The combustion of the fuels was evaluated in a turbocharged multi-cylinder direct fuel injection research engine equipped with a standard three-way catalyst and an external EGR circuit that allowed use of either cooled or non-cooled EGR. The engine operating effects studied at both part and boosted high load conditions included fuel injection timing and pressure, excess air tolerance, EGR tolerance and spark retard limits. A number of blends were also mapped at suitable sites across the European drive cycle under downsized engine conditions.
Journal Article

A Study of Potential Fuel Economy Technologies to Achieve CAFE 2025 Regulations using Fleet Simulation Modeling Software

2015-04-14
2015-01-1683
The 2025 Corporate Average Fleet Economy (CAFE) fuel economy regulations are a significant challenge to the automotive industry. These regulations require dramatic increases in vehicle fleet fuel economy. This paper will identify and analyze a portfolio of technologies that have the potential to achieve the 2025 CAFE fuel economy targets, focusing on powertrain enhancements. The study uses a MAHLE Powertrain developed fleet modeling tool and a range of vehicle technologies and powertrain data taken from MAHLE's global research and development activities. Powertrain technologies considered include extreme engine downsizing, dilute combustion, friction reduction, hybridization, diesel and alternative fuels. The vehicle technologies analyzed include vehicle light weighting, reduced rolling resistance, advanced transmissions and improved aerodynamics.
Technical Paper

Application of the Passive MAHLE Jet Ignition System and Synergies with Miller Cycle and Exhaust Gas Recirculation

2020-04-14
2020-01-0283
Driven by legislation, economics and increasing societal awareness, engine and vehicle manufacturers are facing increasing pressure to reduce vehicle emissions and deliver improved fuel economy. Significant reductions in carbon dioxide (CO2) emissions will need to be achieved to meet these requirements whilst at the same time satisfying the more stringent forthcoming emissions regulations. This focus on techniques to reduce the tailpipe CO2 is increasing the interest in novel combustion technologies, including dilute combustion in gasoline engines. The pre-chamber based jet ignition concept produces high energy jets of partially combusted species that induce ignition at multiple locations in the main combustion chamber to enable rapid, stable combustion, even with dilute mixtures. The present study focusses on the beneficial synergies of the pre-chamber system with high geometric compression ratio (CR), Miller cycle operation and cooled external exhaust gas recirculation (EGR).
Technical Paper

Development of a Friction Optimized Engine

2009-04-20
2009-01-1052
Evolving emissions legislation and concerns for diminishing fuel reserves continue to prompt the automotive industry to seek improvements in engine operation. The application of advanced combustion and system-based concepts is being studied in detail. However, it is believed prudent to first consider the optimization of the friction of the engine, to allow a more cost effective CO2 and fuel consumption reduction policy. MAHLE has developed an optimised friction engine to demonstrate the potential fuel consumption gains available to engine manufacturers and designers. The baseline 2.0 litre turbocharged, direct injection gasoline engine was modified to suit the application of new friction optimized components. This included piston, ring pack, connecting rod, crankshaft bearings, lubrication system, valvetrain and cooling system. A discussion of the design changes, including analysis results, is made. Motored rig and fired engine test results are presented to show the individual gains.
Journal Article

Development of a Turbocharged Direct Injection Downsizing Demonstrator Engine

2009-04-20
2009-01-1503
This paper describes the initial development of a 3 cylinder 1.2l technology demonstrator engine from MAHLE. The purpose of this highly turbocharged direct injection engine is to demonstrate production-ready technologies that enable low CO2 emissions via downsizing by 50%. Downsizing is one of the most proven paths to CO2 emission reduction. By using careful design, a 2.4 l engine can be replaced by a 1.2l engine that has superior torque at all speeds and on-road fuel consumption benefits of 25 - 30%. A two-stage turbocharging system has been developed for the engine to enable good transient response and the high torque levels at all engine speeds demanded by a downsizing approach. Several options were tested and the final system exceeds the 30bar peak BMEP target with stoichiometric fuelling. Indeed, lambda = 1.0 fuelling is maintained over the majority of the full-load line and the 144kW peak power requirement is fulfilled at only 6000 rpm.
Technical Paper

Development of an Ultra-Low Carbon Flex Dual-Fuel Ammonia Engine for Heavy-Duty Applications

2024-04-09
2024-01-2368
The work examined the practicality of converting a modern production 6 cylinder 7.7 litre heavy-duty diesel engine for flex dual-fuel operation with ammonia as the main fuel. A small amount of diesel fuel (pilot) was used as an ignition source. Ammonia was injected into the intake ports during the intake stroke, while the original direct fuel injection equipment was retained and used for pilot diesel injection. A bespoke engine control unit was used to control the injection of both fuels and all other engine parameters. The aim was to provide a cost-effective retrofitting technology for existing heavy-duty engines, to enable eco-friendly operation with minimal carbon emissions. The tests were carried out at a baseline speed of 600 rpm for the load range of the engine (10-90%), with minimum pilot diesel quantity and as high as 90% substitution ratio of ammonia for diesel fuel.
Technical Paper

Evaluating Synergies between Fuels and Near Term Powertrain Technologies through Vehicle Drive Cycle and Performance Simulation

2012-04-16
2012-01-0357
The main focus nowadays for the development of future vehicle powertrain systems is the improvement in fuel efficiency alongside the reduction of pollutant emissions and greenhouse gasses, most notably carbon dioxide. The automotive community is already engaged in seeking solutions to these issues, however, the ideal solution, namely zero emission vehicle is still regarded as being a long way from fruition for the mass market. In the meantime steps are being taken, in terms of engineering development, towards improved fuel efficiency and sustainability of relatively conventionally powered vehicles. One approach to the decarbonization of road vehicles is to supplement existing fossil fuels with sustainable biofuels.
Technical Paper

Exhaust Gas Recirculation for Improved Part and Full Load Fuel Economy in a Turbocharged Gasoline Engine

2006-04-03
2006-01-0047
The work was concerned with the use of exhaust gas recirculation to minimise CO2 and pollutant emissions over a wide operating range in a multi-cylinder research engine. Under part-load conditions a combination of internal and external EGR was used to invoke controlled auto ignition combustion and improve fuel consumption. Outside the CAI regime, small additional fuel savings could be made by employing reduced EGR rates in spark ignition combustion mode. At boosted high load conditions a comparison of excess fuel, excess air and cooled external EGR charge dilution was made. It was apparent that cooled EGR was a more effective suppressant of knock than excess air, with combustion phasing further advanced towards the optimum and improved combustion stability achieved over a wider operating range. The full load emissions reduction potential of EGR was also demonstrated, with emissions of CO2 reduced by up to 17% and engine-out HC and CO decreased by up to 80%.
Technical Paper

Experimental Comparison of Spark and Jet Ignition Engine Operation with Ammonia/Hydrogen Co-Fuelling

2024-04-09
2024-01-2099
Ammonia (NH3) is emerging as a potential fuel for longer range decarbonised heavy transport, predominantly due to favourable characteristics as an effective hydrogen carrier. This is despite generally unfavourable combustion and toxicity attributes, restricting end use to applications where robust health and safety protocols can always be upheld. In the currently reported work, a spark ignited thermodynamic single cylinder research engine was upgraded to include gaseous ammonia and hydrogen port injection fueling, with the aim of understanding maximum viable ammonia substitution ratios across the speed-load operating map. The work was conducted under stoichiometric conditions with the spark timing re-optimised for maximum brake torque at all stable logged sites. The experiments included industry standard measurements of combustion, performance and engine-out emissions.
Journal Article

Heavily Downsized Gasoline Demonstrator

2016-04-05
2016-01-0663
Gasoline engine downsizing is already established as a proven technology to reduce automotive fleet CO2 emissions by as much as 25 %. Further benefits are possible through more aggressive downsizing, however, the trade-off between the CO2 reduction achieved and vehicle drive-ability limits the level of engine downsizing currently adopted. This paper presents results showing the benefits of adding an eSupercharger to a very heavily downsized engine. Measurements are presented from a 1.2 litre, 3-cylinder, engine fitted with an eSupercharger in addition to a conventional turbocharger. The original MAHLE downsizing engine has been re-configured to enable a specific power output that exceeds 160 kW/litre. Of key importance is a cost effective, efficient and flexible boosting system.
Technical Paper

Knock Mitigation Benefits Achieved through the Application of Passive MAHLE Jet Ignition Enabling Increased Output under Stoichiometric Operation

2021-04-06
2021-01-0477
Engine and vehicle manufacturers are facing increasing pressure from legislation to reduce vehicle emissions and deliver improved fuel economy. Significant reductions in carbon dioxide (CO2) emissions will need to be achieved to meet these requirements whilst also satisfying the more stringent forthcoming emissions regulations. This focus on techniques to reduce the tailpipe CO2, whilst also being able to operate over the whole map without the use of fuel enrichment for component protection, is increasing the interest in novel combustion technologies. The pre-chamber-based Jet Ignition concept produces high energy jets of partially combusted species that induce ignition in the main combustion chamber to enable rapid and stable combustion. The present study focusses on the potential of passive jet-ignition to enable increased output whilst maintaining stoichiometric operation through reduce knock sensitivity.
Technical Paper

Lean Boost and External Exhaust Gas Recirculation for High Load Controlled Auto-Ignition

2005-10-24
2005-01-3744
This work was concerned with increasing the attainable load during gasoline controlled auto-ignition combustion in a multi-cylinder direct fuel injection research engine. To extend the peak output under naturally aspirated conditions it proved favourable to combine internal and external exhaust gas recirculation under stoichiometric fuelled conditions. During turbocharged high load operation it was beneficial in terms of fuel economy to dilute the charge with a combination of internally re-circulated exhaust gases and excess air. Replacing a proportion of these diluents with externally re-circulated burned gases appeared to facilitate lower emissions of HC and CO. The highest load generated via boost was limited by increasing peak in-cylinder pressure and falling gas exchange efficiency. Regardless, the use of boost increased the load at which CAI could be invoked without lean NOx after-treatment.
Technical Paper

Pre Versus Post Compressor Supply of Cooled EGR for Full Load Fuel Economy in Turbocharged Gasoline Engines

2008-04-14
2008-01-0425
The work was concerned with applying cooled EGR for improved high load fuel economy and reduced pollutant emissions in a turbocharged gasoline engine. While the thermodynamic benefits of EGR were clear, challenges remain to bring the technique to market. A comparison of pre and post compressor EGR supply indicated that post-compressor routing allowed higher compressor efficiencies to be maintained and hence reduced compressor work as the mass flow of EGR was increased. However, with this post-compressor routing, attaining sufficient EGR rate was not possible over the required operating map. Furthermore, at higher engine speeds where the pre-turbine exhaust pressure was greater than the intake plenum pressure, the timing of peak in-cylinder pressure was not as readily advanced towards the optimum.
Technical Paper

The Development of a Range Extender Electric Vehicle Demonstrator

2013-04-08
2013-01-1469
This paper, which is the fourth of a series, presents the REEV demonstrator vehicle developed by MAHLE Powertrain, which features a specifically designed range extender unit. The previous papers describe the specification setting, detailed design and the development of the range extender engine. A current production gasoline fuelled compact-class car was used as a donor vehicle and converted into a range-extended electric vehicle (REEV). The all-electric driveline specification has been developed to meet the performance criteria set for the demonstrator, matching the acceleration and maximum speed capabilities of the conventional donor vehicle. Also, a target electric only range has enabled the battery pack capacity to be specified. The resulting vehicle is intended to reflect likely, near to market, steps to further the wider adoption of electric vehicles in the compact-class passenger car segment.
Technical Paper

The Effect of Homogeneous Lean Combustion on Efficiency and Emissions Trends in Natural Gas-Fueled Small Engines

2021-04-06
2021-01-0652
Alternative combustion modes for spark ignition engines, such as homogeneous lean combustion, have been extensively researched in transportation and large stationary power applications due to their inherent emissions and fuel efficiency benefits. However, these types of approaches have not been explored for small engines (≤ 30 kW), as the various applications for these engines have historically had significantly different market demands and less stringent emissions requirements. However, going forward, small engines will need to incorporate new technologies to meet increasingly stringent regulatory guidelines. One such technology is jet ignition, enables lean combustion via air dilution through the use of a pre-chamber combustor.
Technical Paper

The Effects of Two-Stage Cam Profile Switching and External EGR on SI-CAI Combustion Transitions

2007-04-16
2007-01-0187
This work was concerned with use of two-stage cam profile switching to transition between SI and CAI combustion in a multi-cylinder direct fuel injection research engine. In order to achieve robust combustion mode changes, it proved necessary to switch the inlet and exhaust bank of tappets independently of one another. Practical issues addressed to improve tappet response included minimising tappet oil circuit dead volumes and reducing the oil pressure difference before and after a switch. When switching from SI to CAI combustion, it was possible to avoid misfire and operate the engine in a mixed-mode form of combustion. In addition, it was demonstrated that supplementary external EGR could be used to minimise transient peak knocking pressures during such transitions. Differences in overall engine noise levels during SI and CAI have also been qualified and some possible solutions are discussed.
Journal Article

The Impact of Advanced Fuels and Lubricants on Thermal Efficiency in a Highly Dilute Engine

2021-04-06
2021-01-0462
In spark ignited engines, thermal efficiency is strongly influenced by the quality of the combustion process as initiated by the ignition system. Jet Ignition is a combustion concept that utilizes a small pre-chamber to produce reactive jets which distribute ignition energy throughout the main combustion chamber. This distributed ignition energy can be leveraged to induce ignition in traditionally difficult-to-ignite regimes, such as in highly dilute mixtures. Highly dilute jet ignition combustion has been proven to produce thermal efficiencies significantly higher than those of conventional spark ignition combustion. To fully exploit the efficiency potential of active jet ignition, multiple aspects of the engine architecture and peripheral systems must be adjusted. Efficiency sensitivities to compression ratio, boost system, and intake port design have been explored extensively.
X