Refine Your Search

Topic

Search Results

Technical Paper

A Simulation Study to Understand the Efficiency Analysis of Multiple Injectors for the Double Compression Expansion Engine (DCEE) Concept

2021-04-06
2021-01-0444
Heavy-duty vehicles face increasing demands of emission regulations. Reduced carbon-dioxide (CO2) emission targets motivate decreased fuel consumption for fossil fuel engines. Increased engine efficiency contributes to lower fuel consumption and can be achieved by lower heat transfer, friction and exhaust losses. The double compression expansion engine (DCEE) concept achieves higher efficiency, as it utilizes a split-cycle approach to increase the in-cylinder pressure and recover the normally wasted exhaust energy. However, the DCEE concept suffers heat losses from the high-pressure approach. This study utilizes up to three injectors to reduce the wall-gas temperature gradient rendering lower convective heat losses. The injector configuration consists of a standard central injector and two side-injectors placed at the rim of the bowl. An increased distance from side-injector to the wall delivered lower heat losses by centralizing hot gases in the combustion chamber.
Technical Paper

A Study of Lean Burn Pre-Chamber Concept in a Heavy Duty Engine

2019-09-09
2019-24-0107
Due to stringent emission standards, the demand for higher efficiency engines has been unprecedentedly high in recent years. Among several existing combustion modes, pre-chamber spark ignition (PCSI) emerges to be a potential candidate for high-efficiency engines. Research on the pre-chamber concept exhibit higher indicated efficiency through lean limit extension while maintaining the combustion stability. In this study, a unique pre-chamber geometry was tested in a single-cylinder heavy-duty engine at low load lean conditions. The geometry features a narrow throat, which was designed to be packaged inside a commercial diesel injector pocket. The pre-chamber was fueled with methane while the main chamber was supplied with an ethanol/air mixture.
Technical Paper

An Experimental Investigation of a Multi-Cylinder Engine with Gasoline-Like Fuel towards a High Engine Efficiency

2016-04-05
2016-01-0763
Partially Premixed Combustion (PPC) is a promising combustion concept with high thermodynamic efficiency and low emission level, and also with minimal modification of standard engine hardware. To use PPC in a production oriented engine, the optimal intake charge conditions for PPC should be included in the analysis. The experiments in this paper investigated and confirmed that the optimal intake conditions of net indicated efficiency for PPC are EGR between 50% and 55% as possible and the lambda close to 1.4. Heat-transfer energy and exhaust gas waste-energy contribute to the majority of the energy loss in the engine. The low EGR region has high heat-transfer and low exhaust gas enthalpy-waste, while the high EGR region has low heat-transfer and high exhaust gas waste-enthalpy. The optimal EGR condition is around 50% where the smallest energy loss is found as a trade-off between heat transfer and exhaust-gas enthalpy-waste.
Journal Article

Analysis of Fuel Properties on Combustion Characteristics in a Narrow-Throat Pre-Chamber Engine

2021-04-06
2021-01-0474
In this study, the authors investigated the effect of fuel properties on the combustion characteristics by employing methane, methanol, ethanol, and primary reference fuels (PRFs) as the main chamber fuel while using methane for the pre-chamber. Global excess air ratios (λ) from 1.6 to lean limit were tested, while 13% of total fuel energy supplied to the engine was delivered via the pre-chamber. The gaseous methane was injected into the pre-chamber at the gas exchange top-dead-center (TDC). Port fuel injection was tested with both open and closed inlet valves. The pre-chamber assembly was designed to fit into the diesel injector pocket of the base engine, which resulted in a narrow throat diameter of 3.3 mm. The combustion stability limit was set at 5% of the coefficient of variation of gross IMEP, and the knock intensity limit was set at 10 bar. GT-Power software was used to estimate the composition of pre-chamber species and was used in heat release analysis of the two chambers.
Technical Paper

Balancing Cylinder-to-Cylinder Variations in a Multi-Cylinder VCR-HCCI Engine

2004-06-08
2004-01-1897
Combustion initiation in an HCCI engine is dependent of several parameters that are not easily controlled like the temperature and pressure history in the cylinder. So achieving the same ignition condition in all the cylinders in a multi-cylinder engine is difficult. Factors as gas exchange, compression ratio, cylinder cooling, fuel supply, and inlet air temperature can differ from cylinder-to-cylinder. These differences cause both combustion phasing and load variations between the cylinders, which in the end affect the engine performance. Operating range in terms of speed and load is also affected by the cylinder imbalance, since misfiring or too fast combustion in the worst cylinders limits the load. The cylinder-to-cylinder variations are investigated in a multi-cylinder Variable Compression Ratio (VCR) engine, and the effect it has on the engine performance.
Technical Paper

CFD Study of Heat Transfer Reduction Using Multiple Injectors in a DCEE Concept

2019-01-15
2019-01-0070
Earlier studies on efficiency improvement in CI engines have suggested that heat transfer losses contribute largely to the total energy losses. Fuel impingement on the cylinder walls is typically associated with high heat transfer. This study proposes a two-injector concept to reduce heat losses and thereby improve efficiency. The two injectors are placed at the rim of the bowl to change the spray pattern. Computational simulations based on the Reynolds-Averaged Navier-Stokes approach have been performed for four different fuel injection timings in order to quantify the reduction in heat losses for the proposed concept. Two-injector concepts were compared to reference cases using only one centrally mounted injector. All simulations were performed in a double compression expansion engine (DCEE) concept using the Volvo D13 single-cylinder engine. In the DCEE, a large portion of the exhaust energy is re-used in the second expansion, thus increasing the thermodynamic efficiency.
Journal Article

Computational Study of a Multiple Fuel Injector Concept under High-Load and High-EGR Conditions

2020-09-15
2020-01-2034
A new concept utilizing multiple fuel injectors was proven effective at reducing heat transfer losses by directing spray plumes further away from the combustion chamber walls. In this concept, two injectors are mounted close to the rim of the piston bowl and point in opposite directions to generate swirling in-cylinder bulk motion. Moreover, a new flat-bowl piston design was also proposed in combination with the multiple fuel injectors for even larger improvements in thermal efficiency. However, all tests were performed at low-to-medium load conditions with no significant EGR. Modern engine concepts, such as the double compression-expansion engine (DCEE), have demonstrated higher thermal efficiency when operated at high-load conditions with a large amount of EGR for NOx control. Thus, this study aims to assess the effectiveness of the multiple-fuel-injector system under such conditions. In this study, a number of 3-D CFD simulations are performed using the RANS technique in CONVERGE.
Technical Paper

Demonstrating the Multi Fuel Capability of a Homogeneous Charge Compression Ignition Engine with Variable Compression Ratio

1999-10-25
1999-01-3679
The potential of a Homogeneous Charge Compression Ignition (HCCI) engine with variable compression ratio has been experimentally investigated. The experiments were carried out in a single cylinder engine, equipped with a modified cylinder head. Altering the position of a secondary piston in the cylinder head enabled a change of the compression ratio. The secondary piston was controlled by a hydraulic system, which was operated from the control room. Dual port injection systems were used, which made it possible to change the ratio of two different fuels with the engine running. By mixing iso-octane with octane number 100 and normal heptane with octane number 0, it was possible to obtain any octane rating between 0 and 100. By using an electrical heater for the inlet air, it was possible to adjust the inlet air temperature to a selected value.
Technical Paper

Double Compression Expansion Engine: A Parametric Study on a High-Efficiency Engine Concept

2018-04-03
2018-01-0890
The Double compression expansion engine (DCEE) concept has exhibited a potential for achieving high brake thermal efficiencies (BTE). The effect of different engine components on system efficiency was evaluated in this work using GT Power simulations. A parametric study on piston insulation, convection heat transfer multiplier, expander head insulation, insulation of connecting pipes, ports and tanks, and the expander intake valve lift profiles was conducted to understand the critical parameters that affected engine efficiency. The simulations were constrained to a constant peak cylinder pressure of 300 bar, and a fixed combustion phasing. The results from this study would be useful in making technology choices that will help realise the potential of this engine concept.
Journal Article

Effects of Different Type of Gasoline Fuels on Heavy Duty Partially Premixed Combustion

2009-11-02
2009-01-2668
The effects of fuel properties on the performance and emissions of an engine running in partially premixed combustion mode were investigated using nine test fuels developed in the gasoline boiling point range. The fuels covered a broad range of ignition quality and fuel chemistry. The fuels were characterized by performing a load sweep between 1 and 12 bar gross IMEP at 1000 and 1300 rpm. A heavy duty single cylinder engine from Scania was used for the experiments; the piston was not modified thus resulting in the standard compression ratio of 18:1. In order to properly run gasoline type of fuels in partially premixed combustion mode, an advanced combustion concept was developed. The concept involved using a lot of EGR, very high boost and an advanced injection strategy previously developed by the authors. By applying this concept all the fuels showed gross indicated efficiencies higher than 50% with a peak of 57% at 8 bar IMEP.
Technical Paper

Effects of Multiple Injectors on Spray Characteristics and Efficiency in Internal Combustion Engines

2021-04-06
2021-01-0501
High-pressure internal combustion engines promise high efficiency, but a proper injection strategy to minimize heat losses and pollutant emissions remain a challenge. Previous studies have concluded that two injectors, placed at the piston bowl's rim, simultaneously improve the mixing and reduce the heat losses. The two-injector configuration further improves air utilization while keeping hot zones away from the cylinder walls. This study investigates how the two-injector concept delivers even higher efficiency by providing additional control of spray -and injection angles. Three-dimensional Reynolds-averaged Navier-Stokes simulations examined several umbrella angles, spray-to-spray angles, and injection orientations by comparing the two-injector cases with a reference one-injector case. The study focused on heat transfer reduction, where the two-injector approach reduces the heat transfer losses by up to 14.3 % compared to the reference case.
Technical Paper

Experimental Evaluation of a Novel High Frequency Ignition System Using a Flow-Reactor Set-up

2013-10-14
2013-01-2564
Using diluted methane/air mixtures in internal combustion engines has a potential of reducing emissions and increasing efficiency. However, the ignition systems used today show difficulties igniting lean mixtures. For this purpose a new high frequency (HF) ignition system using pulse generators and a resonance circuit to achieve a controlled number of sparks during a controlled period of time has been developed. A first prototype of this high frequency system has been tested in a flow-reactor and compared to a conventional ignition system. Results show that the high frequency system improves the flame development under lean conditions compared to the conventional system. Higher frequencies have higher capability of igniting lean mixtures than lower frequencies. Lower spark frequencies were found to travel faster across the electrodes than high frequencies and also compared to the conventional system.
Technical Paper

Experimental and Simulated Results Detailing the Sensitivity of Natural Gas HCCI Engines to Fuel Composition

2001-09-24
2001-01-3609
Natural gas quality, in terms of the volume fraction of higher hydrocarbons, strongly affects the auto-ignition characteristics of the air-fuel mixture, the engine performance and its controllability. The influence of natural gas composition on engine operation has been investigated both experimentally and through chemical kinetic based cycle simulation. A range of two component gas mixtures has been tested with methane as the base fuel. The equivalence ratio (0.3), the compression ratio (19.8), and the engine speed (1000 rpm) were held constant in order to isolate the impact of fuel autoignition chemistry. For each fuel mixture, the start of combustion was phased near top dead center (TDC) and then the inlet mixture temperature was reduced. These experimental results have been utilized as a source of data for the validation of a chemical kinetic based full-cycle simulation.
Technical Paper

Flow and Temperature Distribution in an Experimental Engine: LES Studies and Thermographic Imaging

2010-10-25
2010-01-2237
Temperature stratification plays an important role in HCCI combustion. The onsets of auto-ignition and combustion duration are sensitive to the temperature field in the engine cylinder. Numerical simulations of HCCI engine combustion are affected by the use of wall boundary conditions, especially the temperature condition at the cylinder and piston walls. This paper reports on numerical studies and experiments of the temperature field in an optical experimental engine in motored run conditions aiming at improved understanding of the evolution of temperature stratification in the cylinder. The simulations were based on Large-Eddy-Simulation approach which resolves the unsteady energetic large eddy and large scale swirl and tumble structures. Two dimensional temperature experiments were carried out using laser induced phosphorescence with thermographic phosphors seeded to the gas in the cylinder.
Technical Paper

HCCI Closed-Loop Combustion Control Using Fast Thermal Management

2004-03-08
2004-01-0943
This study applies Closed-Loop Combustion Control (CLCC) using Fast Thermal Management (FTM) on a multi cylinder Variable Compression Ratio (VCR) engine together with load control, to achieve a favorable combustion phasing and load at all times. Step changes of set points for combustion phasing, Compression Ratio (CR), and load together with ramps of engine speed with either constant load, i.e. load control enabled, or constant fuel amount are investigated. Performances of the controllers are investigated by running the engine and comparing the result with CLCC using VCR, which was used in an earlier test. Commercial RON/MON 92/82 gasoline, which corresponds to US regular, is used in the transient tests. Limitations to the speed ramps are further examined and it is found that choice of fuel and its low temperature reaction properties has large impact on how the CLCC perform.
Technical Paper

High-Speed Imaging of Main-Chamber Combustion of a Narrow Throat Pre-Chamber under Lean Conditions

2020-09-15
2020-01-2081
Pre-chamber combustion (PCC) allows an extension on the lean limit of an internal combustion engine (ICE). This combustion mode provides lower NOx emissions and shorter combustion durations that lead to a higher indicated efficiency. In the present work, a narrow throat pre-chamber was tested, which has a unique nozzle area distribution in two rows of six nozzle holes each. Tests were carried out in a modified heavy-duty engine for optical visualization. Methane was used as fuel for both the pre-chamber and the main chamber. Seven operating points were tested, including passive pre-chamber mode as a limit condition, to study the effect of pre- and main-chamber fuel addition on the pre-chamber jets and the main chamber combustion via chemiluminescence imaging. A typical cycle of one of the tested conditions is explained through the captured images. Observations of the typical cycle reveal a predominant presence of only six jets (from the lower row), with well-defined jet structures.
Technical Paper

Homogeneous Charge Compression Ignition (HCCI) Using Isooctane, Ethanol and Natural Gas - A Comparison with Spark Ignition Operation

1997-10-01
972874
The Homogeneous Charge Compression Ignition (HCCI) is the third alternative for combustion in the Internal Combustion (IC) engines. Here, a homogeneous charge is used as in a spark ignited engine but the charge is compressed to auto-ignition as in a diesel. The characteristics of HCCI were compared to SI using a 1.6 liter single cylinder engine with compression ratio 21:1 in HCCI mode and 12:1 in SI mode. Three different fuels were used; isooctane, ethanol and natural gas. Some remarkable results were noted in the experiments: The indicated efficiency of HCCI was much better than for SI operation. Very little NOx was generated with HCCI, eliminating the need for a LeanNOx catalyst. However, HCCI generated more HC and CO than SI operation. Stable and efficient operation with HCCI could be obtained with λ=3 to λ=9 using isooctane or ethanol. Natural gas, with a higher octane number, required a richer mixture to run in HCCI mode.
Technical Paper

Isobaric Combustion at a Low Compression Ratio

2020-04-14
2020-01-0797
In a previous study, it was shown that isobaric combustion cycle, achieved by multiple injection strategy, is more favorable than conventional diesel cycle for the double compression expansion engine (DCEE) concept. In spite of lower effective expansion ratio, the indicated efficiencies of isobaric cycles were approximately equal to those of a conventional diesel cycle. Isobaric cycles had lower heat transfer losses and higher exhaust losses which are advantageous for DCEE since additional exhaust energy can be converted into useful work in the expander. In this study, the performance of low-pressure isobaric combustion (IsoL) and high-pressure isobaric combustion (IsoH) in terms of gross indicated efficiency, energy flow distribution and engine-out emissions is compared to the conventional diesel combustion (CDC) but at a relatively lower compression ratio of 11.5. The experiments are conducted in a Volvo D13C500 single-cylinder heavy-duty engine using standard EU diesel fuel.
Technical Paper

Isobaric Combustion: A Potential Path to High Efficiency, in Combination with the Double Compression Expansion Engine (DCEE) Concept

2019-01-15
2019-01-0085
The efficiency of an internal combustion engine is highly dependent on the peak pressure at which the engine operates. A new compound engine concept, the double compression expansion engine (DCEE), utilizes a two-stage compression and expansion cycle to reach ultrahigh efficiencies. This engine takes advantage of its high-integrity structure, which is adapted to high pressures, and the peak motored pressure reaches up to 300 bar. However, this makes the use of conventional combustion cycles, such as the Seiliger-Sabathe (mixed) or Otto (isochoric) cycles, not feasible as they involve a further pressure rise due to combustion. This study investigates the concept of isobaric combustion at relatively high peak pressures and compares this concept with traditional diesel combustion cycles in terms of efficiency and emissions. Multiple consecutive injections through a single injector are used for controlling the heat release rate profile to achieve isobaric heat addition.
Journal Article

Laser-Induced Phosphorescence and the Impact of Phosphor Coating Thickness on Crank-Angle Resolved Cylinder Wall Temperatures

2011-04-12
2011-01-1292
In order to further improve the energy conversion efficiency in reciprocating engines, detailed knowledge about the involved processes is required. One major loss source in internal combustion engines is heat loss through the cylinder walls. In order to increase the understanding of heat transfer processes and to validate and generate new heat transfer correlation models it is desirable, or even necessary, to have crank-angle resolved data on in-cylinder wall temperature. Laser-Induced Phosphorescence has proved to be a useful tool for surface thermometry also in such harsh environments as running engines. However, the ceramic structure of most phosphor coatings might introduce an error, due to its thermal insulation properties, when being exposed to rapidly changing temperatures. In this article the measurement technique is evaluated concerning the impact from the thickness of the phosphorescent layer on the measured temperature.
X