Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

A Comparison of Wing Stowing Designs Focused on Increased Continuous Payload Volume for Projectile Applications

2011-10-18
2011-01-2782
West Virginia University's Mechanical and Aerospace Engineering Department is studying the benefits of continuous payload volume in transforming projectiles. Continuous payload volume is the single largest vacancy in a vehicle that may be utilized. Currently there is a market for transforming projectiles, which are gun launched (or tube launched) vehicles stowed in an initial configuration; which deploy wings once exiting the launcher to become small unmanned aircraft. WVU's proposed design uses a helical hinge, which allows the wing sections to be externally stowed outside the UAV's fuselage. Additionally, the design positions the vehicles wing sections sub-bore (or smaller than the guns internal diameter), and flush (smooth and planer) to the surface of the fuselage. The typical transforming winged projectile design considered, stores its wing sections along the center axis of the fuselage. This bisects the payload space and limits the continuous payload carrying potential.
Journal Article

A De-Spin and Wings-Leveling Controller for a 40 mm Hybrid Projectile

2013-09-17
2013-01-2262
A Hybrid Projectile (HP) is a round that transforms into a UAV after being launched. Some HP's are fired from a rifled barrel and must be de-spun and wings-level for lifting surfaces to be deployed. Control surfaces and controllers for de-spinning and wings-leveling were required for initial design of an HP 40 mm. Wings, used as lifting surfaces after transformation, need to be very close to level with the ground when deployed. First, the tail surface area needed to de-spin a 40 mm HP was examined analytically and simulated. Next, a controller was developed to maintain a steady de-spin rate and to roll-level the projectile in preparation of wing deployment. The controller was split into two pieces, one to control de-spin, and the other for roll-leveling the projectile. An adaptable transition point for switching controllers was identified analytically and then adjusted by using simulations.
Technical Paper

Development and Testing of a Wing Morphing Mechanism for the Control of a Swept Wing Tailless Aircraft

2005-10-03
2005-01-3391
Inspired by flight in nature, work done by Lippisch, the Hortens, and Northrop offered a chance at achieving the efficiency of bird flight with swept-wing tailless aircraft. Tailless designs have been forced incorporate aerodynamic compromises for control, which have inhibited potential advantages. A morphing mechanism, which changes the twist of wing and can provide pitch, roll and yaw control for a tailless swept wing aircraft. This mechanism is the first step is a series of morphing techniques, which will lead to more fluid, bird-like flight. This research is investigating the design of a morphing wing to improve the flight characteristics of a tailless aircraft. Flight demonstrator and wind-tunnel data is being used to evaluate the stability, control and efficiency of a morphing swept wing tailless aircraft.
Technical Paper

Hybrid Projectile Transformation Condition Detection System for Extended Selectable Range

2013-09-17
2013-01-2203
A Hybrid Projectile (HP) is a tube launched munition that transforms into a gliding UAV, and is currently being researched at West Virginia University. In order to properly transform, the moment of transformation needs to be controlled. A simple timer was first envisioned to control transformation point for maximum distance. The distance travelled or range of an HP can directly be modified by varying the launch angle. In addition, an internal timer would need to be reprogrammed for any distance less than maximum range due to the nominal time to deployment varying with launch angle. A method was sought for automatic wing deployment that would not require reprogramming the round. A body angle estimation system was used to estimate the pitch of the HP relative to the Earth to determine when the HP is properly oriented for the designed glide slope angle. It also filters out noise from an inertial measurement unit (IMU).
Technical Paper

Investigation of Dynamic Roughness Flow Control on NACA 0012 Airfoil at Low Reynolds Number

2013-09-17
2013-01-2096
There is an ever growing need in the aircraft industry to increase the performance of a flight vehicle. To enhance performance of the flight vehicle one active area of research effort has been focused on the control of the boundary layer by both active and passive means. An effective flow control mechanism can improve the performance of a flight vehicle by eliminating boundary layer separation at the leading edge (as long as the energy required to drive the mechanism is not greater than the savings). In this paper the effectiveness of a novel active flow control technique known as dynamic roughness (DR) to eliminate flow separation in a stalled NACA 0012 wing has been explored. As opposed to static roughness, dynamic roughness utilizes small time-dependent deforming elements or humps with amplitudes that are on the order of the local boundary layer height to energize the local boundary layer. DR is primarily characterized by the maximum amplitude and operating frequency.
Technical Paper

Investigation of Faceted Wing Sections for Low Reynolds Number Applications

2013-09-17
2013-01-2097
This paper documents the numerical and experimental investigation of a new type of wing section being developed at West Virginia University that shows good potential for use in wings in low Reynolds number flows. These wing sections have been designed with a minimum number of flat sides, or facets, which are arranged in such a way as to promote flow over the surface similar to traditional smooth airfoil shapes, but without the complexity of the typically highly contoured airfoil form. 2D numerical techniques have been employed to determine appropriate geometric limitations of the wing section facets, and finite span wings comprised of these faceted wing sections have been tested in wind tunnels in wing-only and wing-plus-body configurations to determine their basic aerodynamic performance. The latest results of these efforts, as well as some speculation as to the mechanisms at work are presented.
X