Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

3-D LDV Measurement of In-Cylinder Air Flow in a 3.5L Four-Valve SI Engine

1995-02-01
950648
In-cylinder flows in a motored four-valve SI engine were examined by simultaneous three-component LDV measurement. The purpose of this study was to develop better physical understanding of in-cylinder flows and quantitative methods which correlate in-cylinder flows to engine performance. This study is believed to be the first simultaneous three-component LDV measurement of the air flow over a planar section of a four-valve piston-cylinder assembly. Special attention is paid to the tumble formation process, three-dimensional turbulent kinetic energy, and measurement of the tumble ratio. The influence of the induction system and the piston geometry are believed to have a significant effect on the in-cylinder flow characteristics. Using LDV measurement, the flows in two different piston top geometries were examined. One axial plane was selected to observe the effect of piston top geometries on the flow field in the combustion chamber.
Technical Paper

An Evaluation of Turbulent Kinetic Energy for the In-Cylinder Flow of a Four-Valve 3.5L SI Engine Using 3-D LDV Measurements

1997-02-24
970793
A better understanding of turbulent kinetic energy is important for improvement of fuel-air mixing, which can lead to lower emissions and reduced fuel consumption. An in-cylinder flow study was conducted using 1548 Laser Doppler Velocimetry (LDV) measurements inside one cylinder of a 3.5L four-valve engine. The measurement method, which simultaneously collects three-dimensional velocity data through a quartz cylinder, allowed a volumetric evaluation of turbulent kinetic energy (TKE) inside an automotive engine. The results were animated on a UNIX workstation, using a 3D wireframe model. The data visualization software allowed the computation of TKE isosurfaces, and identified regions of higher turbulence within the cylinder. The mean velocity fields created complex flow patterns with symmetries about the center plane between the two intake valves. High levels of TKE were found in regions of high shear flow, attributed to the collisions of intake flows.
Technical Paper

Coupled Thermal-Engine Simulation for a Light Duty Application

2010-04-12
2010-01-0806
The thermal management of vehicles has increased in importance due to the significant role of friction and auxiliary losses in engine operation on CO2 emissions. To evaluate different system and component concepts regarding their influence on fuel consumption, simulation offers a wide range of opportunities. In this paper a fully integrated model is presented utilizing the GT-Suite commercial code. It contains a diesel engine system model, a cooling circuit including a simplified model for the cooler package in the vehicle front end and a vehicle model. The purpose of this model is the investigation of cooling system components and control strategies with different engine inputs. A significant run time advantage is achieved by using a mean value engine model, which has a reduced number of input parameters. The simulation using the integrated model can be carried out within an acceptable time frame which enables vehicle drive cycle analysis.
Technical Paper

Development of a 48 V P0 Demonstration Vehicle with eBooster® Air Charging

2018-04-03
2018-01-0418
The design of a demonstration vehicle is presented where improvements to the electrical and air induction systems are made which provide increased performance with improved fuel economy. This is made possible by a 48 V architecture which enables the deployment of new components, specifically a belted motor generator unit (MGU) and electrically-driven compressor (eBooster®). The synergy between these components enables energy efficient means to collect regenerated energy and provide added torque, faster engine response, and extended engine off operation among a list of added features. Control features and strategy are highlighted along with simulation and vehicle test data. Resultant performance and fuel economy benefits are reviewed which support the contention of 48 V being a cost effective architecture to enable CO2 reduction relative to a higher voltage hybrid.
Technical Paper

Development of an Experimental Facility to Characterize Performance, Surge, and Acoustics in Turbochargers

2011-05-17
2011-01-1644
A cold turbocharger test facility was designed and developed at The Ohio State University to measure the performance characteristics under steady state operating conditions, investigate unsteady surge, and acquire acoustic data. A specific turbocharger is used for a thermodynamic analysis to determine the capabilities and limitations of the facility, as well as for the design and construction of the screw compressor, flow control, oil, and compression systems. Two different compression system geometries were incorporated. One system allows compressor performance measurements left of the surge line, while the other incorporates a variable-volume plenum. At the full plenum volume and a specific impeller tip speed, the temporal variation of the compressor inlet and outlet and the plenum pressures as well as the turbocharger speed is presented for stable, mild surge, and deep surge operating points.
Journal Article

Instabilities at the Low-Flow Range of a Turbocharger Compressor

2013-05-13
2013-01-1886
The acoustic and performance characteristics of an automotive centrifugal compressor are studied on a steady-flow turbocharger test bench, with the goal of advancing the current understanding of compression system instabilities at the low-flow range. Two different ducting configurations were utilized downstream of the compressor, one with a well-defined plenum (large volume) and the other with minimized (small) volume of compressed air. The present study measured time-resolved oscillations of in-duct and external pressure, along with rotational speed. An orifice flow meter was incorporated to obtain time-averaged mass flow rate. In addition, fast-response thermocouples captured temperature fluctuations in the compressor inlet and exit ducts along with a location near the inducer tips.
Technical Paper

Loss Analysis of a HD-PPC Engine with Two-Stage Turbocharging Operating in the European Stationary Cycle

2013-10-14
2013-01-2700
Partially Premixed Combustion (PPC) has demonstrated substantially higher efficiency compared to conventional diesel combustion (CDC) and gasoline engines (SI). By combining experiments and modeling the presented work investigates the underlying reasons for the improved efficiency, and quantifies the loss terms. The results indicate that it is possible to operate a HD-PPC engine with a production two-stage boost system over the European Stationary Cycle while likely meeting Euro VI and US10 emissions with a peak brake efficiency above 48%. A majority of the ESC can be operated with brake efficiency above 44%. The loss analysis reveals that low in-cylinder heat transfer losses are the most important reason for the high efficiencies of PPC. In-cylinder heat losses are basically halved in PPC compared to CDC, as a consequence of substantially reduced combustion temperature gradients, especially close to the combustion chamber walls.
Journal Article

Prediction of Surge in a Turbocharger Compression System vs. Measurements

2011-05-17
2011-01-1527
The unsteady surge behavior of a turbocharger compression system is studied computationally by employing a one-dimensional engine simulation code. The system modeled represents a new turbocharger test stand consisting of a compressor inlet duct breathing from ambient, a centrifugal compressor, an exit duct connected to an adjustable-volume plenum, followed by another duct which incorporates a control valve and an orifice flow meter before exhausting to ambient. Characteristics of mild and deep surge are captured as the mass flow rate is reduced below the stability limit, including discrete sound peaks at low frequencies along with their amplitudes in the compressor (downstream) duct and plenum. The predictions are then compared with the experimental results obtained from the cold stand placed in a hemi-anechoic room.
Journal Article

Simulation of Mild Surge in a Turbocharger Compression System

2010-10-25
2010-01-2142
The behavior of the compression system in turbochargers is studied with a one-dimensional engine simulation code. The system consists of an upstream compressor duct open to ambient, a centrifugal compressor, a downstream compressor duct, a plenum, and a throttle valve exhausting to ambient. The compression system is designed such that surge is the low mass flow rate instability mode, as opposed to stall. The compressor performance is represented through an extrapolated steady-state map. Instead of incorporating a turbine into the model, a drive torque is applied to the turbocharger shaft for simplification. Unsteady compression system mild surge physics is then examined computationally by reducing the throttle valve diameter from a stable operating point. Such an increasing resistance decreases the mass flow rate through the compression system and promotes surge.
Technical Paper

The Measurement and Control of Cyclic Variations of Flow in a Piston Cylinder Assembly

2003-03-03
2003-01-1357
The existence of the cyclic variation of the flow inside an cylinder affects the performance of the engine. Developing methods to understand and control in-cylinder flow has been a goal of engine designers for nearly 100 years. In this paper, passive control of the intake flow of a 3.5-liter DaimlerChrysler engine was examined using a unique optical diagnostic technique: Molecular Tagging Velocimetry (MTV), which has been developed at Michigan State University. Probability density functions (PDFs) of the normalized circulation are calculated from instantaneous planar velocity measurements to quantify gas motion within a cylinder. Emphasis of this work is examination of methods that quantify the cyclic variability of the flow. In addition, the turbulent kinetic energy (TKE) of the flow on the tumble and swirl plane is calculated and compared to the PDF circulation results.
Journal Article

Variable Intake Cam Duration Technologies for Improved Fuel Economy

2012-09-10
2012-01-1641
Using a 3 liter, 4 valves per cylinder, V6 Diesel engine model, this study investigates late intake valve closing (LIVC) time in an effort to reduce the fuel consumption of the engine. Two different intake cam duration technologies for diesel engines are evaluated using a 1-D engine simulation software code. The first method utilized for duration control delays the effective closing of the intake valve by moving one intake cam lobe with respect to the other baseline intake cam lobe. In the second method, the closing of both intake valves is delayed by the introduction of an adjustable dwell period during the closing portion of the valve motion. During this mid-lift dwell period, the lift is held at a constant value until it goes into the closing phase. The systems are evaluated and compared at 4 operating points of varying engine speed and load. At each operating point, while engine load is held constant, intake valve closing time is varied.
X