Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Aerodynamic Enablers Review for Automotive Applications

2016-10-25
2016-36-0203
Automakers are seeking more efficient and green vehicles projects in terms of fuel consumption and CO2 emissions. Several factors are directly related to the performance and one of the most important is the aerodynamics. Cars with smooth geometries and transitions are expected to have a better aerodynamic behavior compared with the ones with rough geometries. Regardless the vehicle geometry changes, another way to improve the aerodynamics is by adding new parts, in order to improve the drag coefficient of the car. Most of the time, these parts are added but the functionality is not well defined. The main objective of this work is to identify, explain the way it should work and some applications of additional aeroparts. Those parts could be assembled in a vehicle in order to improve the drag coefficient, have a better fuel economy and lower emissions rate.
Technical Paper

Aerodynamic Shape Improvement for Driver Side View Mirror of Hatchback Vehicle using Adjoint Optimization Method

2015-09-22
2015-36-0156
Nowadays, one of the most important roles in vehicle development is the aerodynamic, which aims efficiency on fuel consumption and leads to a green technology. Several initiatives around the world are regulating emissions and efficiency of vehicles such as EURO for European Marketing and the INOVAR Project to be implemented in Brazil on 2017. Thus, this study intend to perform an optimization to minimize the drag force of a hatchback vehicle. The main goal of this work is demonstrate the potential of optimization techniques to provide an aerodynamic shape improvement for the driver side outside rear view mirror of a hatchback vehicle. The optimization solver used in this work is the Adjoint Solver, which makes shape sensitivity analysis and mesh/volume morphing. The study was conducted using CFD simulations to reduce the drag force of current production hatchback vehicle previously validated and correlated in wind tunnel test.
Technical Paper

CFD drag analysis of autonomous vehicles in different arrays

2018-09-03
2018-36-0184
Autonomous vehicles, which are defined as capable of sensing environment and navigating without any human input, are the top trend of the automobilist industry in terms of technology. The computers responsible for the control are able to set the vehicle to optimum operation point. With the advent of Computational Fluid Dynamics -CFD software, it is possible to study drag reduction proposals when the vehicles drive at the velocity, which contributes to increase fuel economy. In this context, based on a sedan virtual drag model, several simulations cases were developed considering different vehicle arrays and changing the distance between each one. The study aims to demonstrate, using virtual simulations, the potential drag coefficient reduction when vehicles are moving in a constant speed and which configuration leads to better performance increment. Taking the isolated vehicle as the baseline value, all the vehicles in the different arrays were analyzed.
Technical Paper

Mud Deposition Simulation at the CRFM of an Automobile using CFD Simulation

2014-09-30
2014-36-0255
CFD is becoming very popular among the industries and the use of multiphase simulations is also increasing with more powerful CPUs and reliable CFD codes. The scope of this work is to present a mud deposition simulation methodology using CFD multiphase analysis at the CRFM of an automobile, in order to prevent low performance on the condenser or on the radiator and compromise the heat exchange performance. Mud reaches the front end of the car and results show the mud path and mud deposition on the CRFM and the blocked area.
Technical Paper

Optimized caliper angular position for brake rotor temperature reduction

2016-10-25
2016-36-0204
Within the advances in Computer Fluid Dynamics algorithms and High Performance Computing, large clusters become available at low costs allowing virtual simulations that were not possible some years ago at reasonable costs and time. This work uses intensively this condition and applies these advances on brake system optimization. The methodology developed in the present work verifies the best angular position for caliper inside the wheel to reduce the rotor temperature during braking process such as downhill procedure. Thus, this method is applied to a mini-VAN vehicle, where the best position is found, based on two design parameters: rotor temperature and convection heat transfer coefficient. This study shows that the most suitable position for initial selection is the first one.
Technical Paper

Performance Comparison of Different Chamber designs for Ventilated Disk Brake

2017-11-07
2017-36-0240
Environment concerns lead the automakers to invest resources and put research in engine downsize to reduce carbon emission. Turbo charge is a possibility due to its fuel consumption and emission reduction without compromise the performance. Nowadays, it is becoming common observe high performance small cars due to high torque and power available. In consequence, brake system need to dissipate more kinetic energy without adding mass or costs. Modern passenger cars require a high-speed brake system. To achieve proper brake system cooling, the rotor must be ventilated and designed to optimize the energy dissipated, which is generated by friction between pad and disk. Some approaches consider the rotor as a centrifugal air pump and the design rule is to improve the airflow inside the vanes. The approach considering a brake rotor similar to centrifugal air pump rotor may be considered as limited approach, once it simplifies the heat transfer phenomena inside chamber.
Technical Paper

Thermal Comfort Analysis for Passengers Inside a Vehicular Cabin

2016-10-25
2016-36-0197
The theory related to the thermal comfort of a human being is described in this article. It is not technically and economically feasible to provide optimal thermal comfort to a human being. The air temperature inside the vehicles is inhomogeneous mainly due to the ventilation system and to solar heat flux. The thermal stratification of air that results in difference of heat flux at the human body may cause thermal discomfort. In this case, it is important to quantify the degree of discomfort, which can be represented by the Predicted Mean Vote and Predicted Percentage Dissatisfied indices. This study intends to determine the thermal comfort for a human being inside vehicular cabins considering just the ventilation system with the same ambient temperature. A cabin of a vehicle is virtually reproduced in FLUENT® and the methodology of thermal comfort, based on previous works from the literature, is developed in Matlab 2010a and applied in this simulation.
Technical Paper

Truck Trailer Aerodynamic Design Optimization Through CFD Simulations

2020-01-13
2019-36-0103
Cargo trucks are one of the most important and flexible ways of moving cargo within inlands. In some countries, such as Brazil, the economy relies on them to transport all kinds of products, from field and factory to consumer. In order to reduce freight prices, beside route optimization, truck manufactures started to focus on the aerodynamics development of those vehicles, in order to improve the efficiency, reducing fuel consumption and emissions. Although the truck aerodynamics development is important, most vehicles are not manufactured or don’t consider the truck trailer, which plays a key role in the full aerodynamics performance of the truck, once it might increase the front area and also change the overall aero performance.
Technical Paper

Windows Opening Influence on the Drag Coefficient of a Hatchback Vehicle

2015-09-22
2015-36-0158
Aerodynamics plays a key role in nowadays vehicle development, aiming efficiency on fuel consumption, which leads to a green technology. Several initiatives around the world are regulating emissions and efficiency of vehicles such as EURO for European Marketing and the INOVAR Auto Project to be implemented in Brazil on 2017. In order to meet requirements in terms of performance, especially on aerodynamics, automakers are focusing on aero-efficient exterior designs and also adding deflectors, covers, active spoilers and several other features to meet the drag coefficient. Usually, the aerodynamics properties of a vehicle are measured in both CFD simulations and wind tunnels, which provide controlled conditions for the test that could be easily reproduced. During the real operations conditions, external factors can affect the flow over the vehicle such as cross wind in open highways.
X