Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

A Turbo Charged Dual Fuel HCCI Engine

2001-05-07
2001-01-1896
A 6-cylinder truck engine is modified for turbo charged dual fuel Homogeneous Charge Compression Ignition (HCCI) engine operation. Two different fuels, ethanol and n-heptane, are used to control the ignition timing. The objective of this study is to demonstrate high load operation of a full size HCCI engine and to discuss some of the typical constraints associated with HCCI operation. This study proves the possibility to achieve high loads, up to 16 bar Brake Mean Effective Pressure (BMEP), and ultra low NOx emissions, using turbo charging and dual fuel. Although the system shows great potential, it is obvious that the lack of inlet air pre heating is a drawback at low loads, where combustion efficiency suffers. At high loads, the low exhaust temperature provides little energy for turbo charging, thus causing pump losses higher than for a comparable diesel engine. Design of turbo charger therefore, is a key issue in order to achieve high loads in combination with high efficiency.
Technical Paper

Boosting for High Load HCCI

2004-03-08
2004-01-0940
Homogeneous Charge Compression Ignition (HCCI) holds great promises for good fuel economy and low emissions of NOX and soot. The concept of HCCI is premixed combustion of a highly diluted mixture. The dilution limits the combustion temperature and thus prevents extensive NOX production. Load is controlled by altering the quality of the charge, rather than the quantity. No throttling together with a high compression ratio to facilitate auto ignition and lean mixtures results in good brake thermal efficiency. However, HCCI also presents challenges like how to control the combustion and how to achieve an acceptable load range. This work is focused on solutions to the latter problem. The high dilution required to avoid NOX production limits the mass of fuel relative to the mass of air or EGR. For a given size of the engine the only way to recover the loss of power due to dilution is to force more mass through the engine.
Technical Paper

Compression Ratio Influence on Maximum Load of a Natural Gas Fueled HCCI Engine

2002-03-04
2002-01-0111
This paper discusses the compression ratio influence on maximum load of a Natural Gas HCCI engine. A modified Volvo TD100 truck engine is controlled in a closed-loop fashion by enriching the Natural Gas mixture with Hydrogen. The first section of the paper illustrates and discusses the potential of using hydrogen enrichment of natural gas to control combustion timing. Cylinder pressure is used as the feedback and the 50 percent burn angle is the controlled parameter. Full-cycle simulation is compared to some of the experimental data and then used to enhance some of the experimental observations dealing with ignition timing, thermal boundary conditions, emissions and how they affect engine stability and performance. High load issues common to HCCI are discussed in light of the inherent performance and emissions tradeoff and the disappearance of feasible operating space at high engine loads.
Technical Paper

Evaluation of Electrically Heated Catalyst Control Strategies against a Variation of Cold Engine Start Driver Behaviour

2022-03-29
2022-01-0544
An electrically heated catalyst (EHC) in the three-way catalyst (TWC) aftertreatment system of a gasoline internal combustion engine (ICE) provides cold engine start exhaust pollutant emission reduction potential. The EHC can be started before switching on the ICE, thereby offering the possibility to pre-heat (PRH) the TWC, in the absence of exhaust flow. The EHC can also provide post engine start heat (PSH) when the heat is accompanied by exhaust mass flow over the TWC. A mixed heating strategy (MXH) comprises both PRH and PSH. All three strategies are evaluated under a range of engine start variations using an ICE-exhaust aftertreatment (EATS) simulation framework. It is driven by an engine speed-torque requested trace, with an engine-out emissions model focused on cold-start, engine heating and catalyst heating engine measures and a physics- based EATS with EHC model.
Technical Paper

The Effect of Cooled EGR on Emissions and Performance of a Turbocharged HCCI Engine

2003-03-03
2003-01-0743
This paper discusses the effects of cooled EGR on a turbo charged multi cylinder HCCI engine. A six cylinder, 12 liter, Scania D12 truck engine is modified for HCCI operation. It is fitted with port fuel injection of ethanol and n-heptane and cylinder pressure sensors for closed loop combustion control. The effects of EGR are studied in different operating regimes of the engine. During idle, low speed and no load, the focus is on the effects on combustion efficiency, emissions of unburned hydrocarbons and CO. At intermediate load, run without turbocharging to achieve a well defined experiment, combustion efficiency and emissions from incomplete combustion are still of interest. However the effect on NOx and the thermodynamic effect on thermal efficiency, from a different gas composition, are studied as well. At high load and boost pressure the main focus is NOx emissions and the ability to run high mean effective pressure without exceeding the physical constraints of the engine.
X