Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

3D FEA Thermal Modeling with Experimentally Measured Loss Gradient of Large Format Ultra-Fast Charging Battery Module Used for EVs

2022-03-29
2022-01-0711
A large amount of heat is generated in electric vehicle battery packs during high rate charging, resulting in the need for effective cooling methods. In this paper, a prototype liquid cooled large format Lithium-ion battery module is modeled and tested. Experiments are conducted on the module, which includes 31Ah NMC/Graphite pouch battery cells sandwiched by a foam thermal pad and heat sinks on both sides. The module is instrumented with twenty T-type thermocouples to measure thermal characteristics including the cell and foam surface temperature, heat flux distribution, and the heat generation from batteries under up to 5C rate ultra-fast charging. Constant power loss tests are also performed in which battery loss can be directly measured.
Technical Paper

A Comparative Analysis for Six-Phase Motor Configurations

2020-04-14
2020-01-0465
In this paper, a comparison between different six-phase machine topologies is conducted considering their technical performance for automotive applications. Asymmetrical and symmetrical configurations, as well as neutral point connection, are considered as candidate topologies and modelled using vector space decomposition (VSD) and double stator or double dq transformations. In both cases, a generalized model to include an arbitrary phase shift between the windings is presented as well as the effect of the neutral connection on the inverter model. For the selection, the steady-state and post-fault performance are considered in terms of control flexibility, fault-tolerant capability, and dc-link voltage utilization. For the latest, the different topologies are evaluated operating in both linear and overmodulation regions based on space vector modulation (SVM).
Journal Article

Accelerated Sizing of a Power Split Electrified Powertrain

2020-04-14
2020-01-0843
Component sizing generally represents a demanding and time-consuming task in the development process of electrified powertrains. A couple of processes are available in literature for sizing the hybrid electric vehicle (HEV) components. These processes employ either time-consuming global optimization techniques like dynamic programming (DP) or near-optimal techniques that require iterative and uncertain tuning of evaluation parameters like the Pontryagin’s minimum principle (PMP). Recently, a novel near-optimal technique has been devised for rapidly predicting the optimal fuel economy benchmark of design options for electrified powertrains. This method, named slope-weighted energy-based rapid control analysis (SERCA), has been demonstrated producing results comparable to DP, while limiting the associated computational time by near two orders of magnitude.
Technical Paper

An Adaptive Flux-Weakening Strategy Considering High-Speed Operation of Dual Three-Phase PM Machine for Electric Vehicles

2024-04-09
2024-01-2212
Dual three-phase (DTP) permanent magnet synchronous machines (PMSMs) are becoming attractive for electric vehicle (EV) propulsion systems in the automotive industry. Flux-weakening (FW) control technique is important to ensure DTP-PMSMs operating in high-speed range. This paper proposes an adaptive FW control algorithm to ensure better performance and stability in variant speeds. A small-signal model is developed to obtain the adaptive gain for a constant controller bandwidth regardless of the speeds. The proposed FW controller is implemented, tuned, and validated on a DTP-PMSM experiment setup. The proposed method improves the FW performances in terms of torque and system stability, compared with the non-adaptive FW controller. Moreover, the harmonics analysis shows an inevitable xy-components affecting the overall performances. The effect of xy controller gain is further investigated for the FW operation.
Technical Paper

Overmodulation Strategies for Dual Three-Phase PMSM Drives

2022-03-29
2022-01-0722
A comparative analysis of overmodulation methods is performed in the generalized form in this paper. The generalized form is based on four segmented formulae, which streamlines the execution of the PWM module. The comparative analysis considers five aspects: actual modulation index, harmonic content, transition to six-step operation, modulation index linearization, and execution complexity. The main contributions of this paper are twofold. Firstly, a thorough assessment of conventional overmodulation strategies for dual three-phase PMSM drives is undertaken. Secondly, a modified Minimum Phase Error (MPE) overmodulation method is proposed to extend the overmodulation to six-step operation. The modified MPE is introduced with advantages of wider modulation index range, low harmonic components in voltages and currents, smooth transition to six-step operation, and simple implementation.
Technical Paper

Rotor Durability Optimization by Means of Finite Element Multiphysics Analysis for High-Speed Surface Permanent Magnet Electric Machines

2023-04-11
2023-01-0529
Transport electrification is pushing the automotive and aerospace industries to enhance the power density of their powertrains further and further. One of the technologies currently pursued by some companies is high-speed electric motors. For instance, the new Model S Plaid motor by Tesla has a carbon-fiber wrapped IPM (Interior Permanent Magnet) rotor which can exceed 20,000rpm. The SPX88-120 made by Helix company shows a power density of about 18kW/kg at 50,000rpm. However, such high rotating speeds result is huge mechanical stresses in the entire rotating assembly, thus making the structural design of these parts extremely challenging. The primary goal of this paper is to provide a scientific rationale for the effective Finite Element Modeling (FEM) and integration strategies to maximize the rotating assembly durability of a 150kW radial flux SPMSM (surface-mounted permanent magnet synchronous motor) considered as a case-study.
X