Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

An Application of the Coherent Flamelet Model to Diesel Engine Combustion

1995-02-01
950281
A turbulent combustion model based on the coherent flamelet model was developed in this study and applied to diesel engines. The combustion was modeled in three distinct but overlapping phases: low temperature ignition kinetics using the Shell ignition model, high temperature premixed burn using a single step Arrhenius equation, and the flamelet based diffusion burn. Two criteria for transitions based on temperature, heat release rate, and the local Damköhler number were developed for the progression of combustion between each of these phases. The model was implemented into the computational computer code KIVA-II. Previous experiments on a Caterpillar model E 300, # 1Y0540 engine, a Tacom LABECO research engine, and a single cylinder version of a Cummins N14 production engine were used to validate the cylinder averaged predictions of the model.
Technical Paper

Cycle Simulation Diesel HCCI Modeling Studies and Control

2004-10-25
2004-01-2997
An integrated system based modeling approach has been developed to understand early Direct Injection (DI) Diesel Homogeneous Charge Compression Ignition (HCCI) process. GT-Power, a commercial one-dimensional (1-D) engine cycle code has been coupled with an external cylinder model which incorporates sub-models for fuel injection, vaporization, detailed chemistry calculations (Chemkin), heat transfer, energy conservation and species conservation. In order to improve the modeling accuracy, a multi-zone model has been implemented to account for temperature and fuel stratifications in the cylinder charge. The predictions from the coupled simulation have been compared with experimental data from a single cylinder Caterpillar truck engine modified for Diesel HCCI operation. A parametric study is conducted to examine the effect of combustion timing on four major control parameters. Overall the results show good agreement of the trends between the experiments and model predictions.
Journal Article

Effect of Mesh Structure in the KIVA-4 Code with a Less Mesh Dependent Spray Model for DI Diesel Engine Simulations

2009-06-15
2009-01-1937
Two different types of mesh used for diesel combustion with the KIVA-4 code are compared. One is a well established conventional KIVA-3 type polar mesh. The other is a non-polar mesh with uniform size throughout the piston bowl so as to reduce the number of cells and to improve the quality of the cell shapes around the cylinder axis which can contain many fuel droplets that affect prediction accuracy and the computational time. This mesh is specialized for the KIVA-4 code which employs an unstructured mesh. To prevent dramatic changes in spray penetration caused by the difference in cell size between the two types of mesh, a recently developed spray model which reduces mesh dependency of the droplet behavior has been implemented. For the ignition and combustion models, the Shell model and characteristic time combustion (CTC) model are employed.
Technical Paper

Experiments and CFD Modeling of Direct Injection Gasoline HCCI Engine Combustion

2002-06-03
2002-01-1925
The present study investigated HCCI combustion in a heavy-duty diesel engine both experimentally and numerically. The engine was equipped with a hollow-cone pressure-swirl injector using gasoline direct injection. Characteristics of HCCI combustion were obtained by very early injection with a heated intake charge. Experimental results showed an increase in NOx emission and a decrease in UHC as the injection timing was retarded. It was also found that optimization can be achieved by controlling the intake temperature together with the start-of-injection timing. The experiments were modeled by using an engine CFD code with detailed chemistry. The CHEMKIN code was implemented into KIVA-3V such that the chemistry and flow solutions were coupled. The model predicted ignition timing, cylinder pressure, and heat release rates reasonably well. The NOx emissions were found to increase as the injection timing was retarded, in agreement with experimental results.
Technical Paper

Modeling of a Turbocharged DI Diesel Engine Using Artificial Neural Networks

2002-10-21
2002-01-2772
Artificial neural networks (ANN) have been recognized as universal approximators for nonlinear continuous functions and actively applied in engine research in recent years [1, 2, 3, 4, 5, 6, 7 and 8]. This paper describes the methodology and results of using the ANN to model a turbocharged DI diesel engine. The engine was simulated using the CFD code (KIVA-ERC) over a wide range of operating conditions, and numerical simulation results were used to train the ANN. An efficient data collection methodology using the Design of Experiments (DOE) techniques was developed to select the most characteristic engine operating conditions and hence the most informative data to train the ANN. This approach minimizes the time and cost of collecting training data from either computational or experimental resources. The trained ANN was then used to predict engine parameters such as cylinder pressure, cylinder temperature, NOx and soot emissions, and cylinder heat transfer.
Technical Paper

Modeling the Effects of Intake Flow Structures on Fuel/Air Mixing in a Direct-injected Spark-Ignition Engine

1996-05-01
961192
Multidimensional computations were carried out to simulate the in-cylinder fuel/air mixing process of a direct-injection spark-ignition engine using a modified version of the KIVA-3 code. A hollow cone spray was modeled using a Lagrangian stochastic approach with an empirical initial atomization treatment which is based on experimental data. Improved Spalding-type evaporation and drag models were used to calculate drop vaporization and drop dynamic drag. Spray/wall impingement hydrodynamics was accounted for by using a phenomenological model. Intake flows were computed using a simple approach in which a prescribed velocity profile is specified at the two intake valve openings. This allowed three intake flow patterns, namely, swirl, tumble and non-tumble, to be considered. It was shown that fuel vaporization was completed at the end of compression stroke with early injection timing under the chosen engine operating conditions.
Technical Paper

Multi-Dimensional Modeling of Heat and Mass Transfer of Fuel Films Resulting from Impinging Sprays

1998-02-23
980132
To help account for fuel distribution during combustion in diesel engines, a fuel film model has been developed and implemented into the KIVA-II code [1]. Spray-wall interaction and spray-film interaction are also incorporated into the model. Modified wall functions for evaporating, wavy films are developed and tested. The model simulates thin fuel film flow on solid surfaces of arbitrary configuration. This is achieved by solving the continuity, momentum and energy equations for the two dimensional film that flows over a three dimensional surface. The major physical effects considered in the model include mass and momentum contributions to the film due to spray drop impingement, splashing effects, various shear forces, piston acceleration, dynamic pressure effects, and convective heat and mass transfer.
Technical Paper

Neural Cylinder Model and Its Transient Results

2003-10-27
2003-01-3232
A cylinder model was developed using artificial neural networks (ANN). The cylinder model utilized the trained ANN models to predict engine parameters including cylinder pressures, cylinder temperatures, cylinder wall heat transfer, NOx and soot emissions. The ANN models were trained to approximate CFD simulation results of an engine. The ANN cylinder model was then applied to predict engine performance and emissions over the standard heavy-duty FTP transient cycle. The engine responses varying over the engine speed and torque range were simulated in the course of the transient test cycle. It was demonstrated that the ANN cylinder model is capable of simulating the characteristics of the engine operating under transient conditions reasonably well.
Technical Paper

Numerical Study of Fuel/Air Mixture Preparation in a GDI Engine

1999-10-25
1999-01-3657
Numerical simulations are performed to investigate the fuel/air mixing preparation in a gasoline direct injection (GDI) engine. A two-valve OHV engine with wedge combustion chamber is investigated since automobiles equipped with this type of engine are readily available in the U.S. market. Modifying and retrofitting these engines for GDI operation could become a viable scenario for some engine manufactures. A pressure-swirl injector and wide spacing injection layout are adapted to enhance mixture preparation. The primary interest is on preparing the mixture with adequate equivalence ratio at the spark plug under a wide range of engine operating conditions. Two different engine operating conditions are investigated with respect to engine speed and load. A modified version of the KIVA-3V multi-dimensional CFD code is used. The modified code includes the Linearized Instability Sheet Atomization (LISA) model to simulate the development of the hollow cone spray.
X