Refine Your Search

Topic

Search Results

Technical Paper

100% LPG Long Haul Truck Conversion - Economy and Environmental Benefits

2012-09-24
2012-01-1983
Advanced Vehicle Technologies (AVT), a Ballarat Australia based company, has developed the World's first diesel to 100% LPG conversion for heavy haul trucks. There is no diesel required or utilized on the trucks. The engine is converted with minimal changes into a spark ignition engine with equivalent power and torque of the diesel. The patented technology is now deployed in 2 Mercedes Actros trucks. The power output in engine dynamometer testing exceeds that of the diesel (in excess of 370 kW power and 2700 Nm torque). In on-road application the power curve is matched to the diesel specifications to avoid potential downstream power-train stress. Testing at the Department of Transport Energy & Infrastructure, Regency Park, SA have shown the Euro 3 truck converted to LPG is between Euro 4 and Euro 5 NOx levels, CO2 levels 10% better than diesel on DT80 test and about even with diesel on CUEDC tests.
Journal Article

4 L Light Duty LPG Engine Evaluated for Heavy Duty Application

2010-05-05
2010-01-1463
Many applications of liquefied petroleum gas (LPG) to commercial vehicles have used their corresponding diesel engine counterparts for their basic architecture. Here a review is made of the application to commercial vehicle operation of a robust 4 L, light-duty, 6-cylinder in-line engine produced by Ford Australia on a unique long-term production line. Since 2000 it has had a dedicated LPG pick-up truck and cab-chassis variant. A sequence of research programs has focused on optimizing this engine for low carbon dioxide (CO₂) emissions. Best results (from steady state engine maps) suggest reductions in CO₂ emissions of over 30% are possible in New European Drive Cycle (NEDC) light-duty tests compared with the base gasoline engine counterpart. This has been achieved through increasing compression ratio to 12, running lean burn (to λ = 1.6) and careful study (through CFD and bench tests) of the injected LPG-air mixing system.
Technical Paper

A High Efficiency Small Internal Combustion Engine for the Production of Electricity Onboard Electric Vehicles

2021-09-22
2021-26-0162
A combustion fuel tank, an internal combustion engine (ICE), and a generator provide the best opportunity to store extra energy onboard battery electric vehicles (BEV). This energy may be used for on-demand electricity production when needed, for example, rural or interstate driving. Specific to this work, the design of a high-efficiency ICE that works at a single speed and a single load, continuously, during the operation of this series hybrid vehicle is considered. The ICE and generator provide a fuel conversion efficiency chemical to electric η~50%. The series hybrid vehicle may deliver miles-per-gallon-of-gasoline (MPG) 13% better than current production plug-in hybrid electric vehicles (PHEV), and miles-per-gallon-of-gasoline-equivalent (MPGe) 12% better than the BEV of the same platform with a larger battery pack to permit capital cities commuting.
Technical Paper

A Naturally Aspirated Four Stroke Racing Engine with One Intake and One Exhaust Horizontal Rotary Valve per Cylinder and Central Direct Injection and Ignition by Spark or Jet

2015-03-10
2015-01-0006
The paper discusses the benefits of a four stroke engine having one intake and one exhaust rotary valve. The rotary valve has a speed of rotation half the crankshaft and defines an open passage that may permit up to extremely sharp opening or closing and very large gas exchange areas. The dual rotary valve design is applied to a racing engine naturally aspirated V-four engine of 1000cc displacement, gasoline fuelled with central direct injection and spark ignition. The engine is then modeled by using a 1D engine & gas dynamics simulation software package to assess the potentials of the solution. The improved design produces much larger power densities than the version of the engines with traditional poppet valves revving at higher speeds, with reduced frictional losses, and with larger gas exchange areas while also improving the fuel conversion efficiency thanks to the sharpness of opening or closing events.
Technical Paper

A New Look at Oxygen Enrichment 1) The Diesel Engine

1990-02-01
900344
New concepts in oxygen enrichment of the inlet air have been examined in tests on two direct injection diesel engines, showing: significant reduction in particulate emissions (nearly 80% at full load), increased thermal efficiency if injection timing control is employed, substantial reductions in exhaust smoke under most conditions, ability to burn inferior quality fuels which is economically very attractive and achivement of turbo-charged levels of output with consequential benefits of increased power/mass and improved thermal efficiency. The replacement of an engine's turbocharger and intercooling system with a smaller turbocharger and polymeric membrane elements to supply the oxygen enriched stream should allow improved transient response. NOx emission remain a problem and can only be reduced to normally aspirated engine levels at some efficiency penalty.
Technical Paper

A Novel Valve-Less Supercharged Small Two Stroke Engine of Top Brake Efficiency Above 36% and Power Density above 100 KW/Liter

2013-11-27
2013-01-2772
The paper presents a novel design for a two stroke thermal engine that delivers excellent fuel economy and low emissions within the constraints of today's cost, weight and size. The engine features asymmetrical port timing through a novel translating and rotating piston mechanism. The engine is externally scavenged and supercharged, has wet sump and oil pressure lubrication, direct injection, it is lightweight, easy to build, with minimal number of parts, low production cost, ability to be balanced and compact design. The two stroke mechanism produces a linear motion of the pistons as well as an elliptical path on the surface of the cylinder. This allows the piston to sweep as well as travel past the ports. Suitable slots around the raised lip of the piston generate the asymmetry that makes the exhaust port to open first and to close first. The inlet port remains open to complete the cylinder charging and allow supercharging. Direct fuel injection is adopted for best results.
Technical Paper

A Novel Wankel Engine Featuring Jet Ignition and Port or Direct Injection for Faster and More Complete Combustion Especially Designed for Gaseous Fuels

2015-03-10
2015-01-0007
Hydrogen Internal Combustion Engine (ICE) vehicles using a traditional ICE that has been modified to use hydrogen fuel are an important mid-term technology on the path to the hydrogen economy. Hydrogen-powered ICEs that can run on pure hydrogen or a blend of hydrogen and compressed natural gas (CNG) are a way of addressing the widespread lack of hydrogen fuelling infrastructure in the near term. Hydrogen-powered ICEs have operating advantages as all weather conditions performances, no warm-up, no cold-start issues and being more fuel efficient than conventional spark-ignition engines. The Wankel engine is one of the best ICE to be converted to run hydrogen. The paper presents some details of an initial investigation of the CAD and CAE modeling of a novel design where two jet ignition devices per rotor are replacing the traditional two spark plugs for a faster and more complete combustion.
Technical Paper

Adaptive Air Fuel Ratio Optimisation of a Lean Burn SI Engine

1996-05-01
961156
An adaptive air fuel ratio (AFR) control system has been implemented on a modern high performance fuel injected four cylinder engine. A pressure transducer in the combustion chamber is used to measure the indicated mean effective pressure (IMEP) for efficiency and cyclic variability feedback. The controller tunes the relative AFR, λ, in the range λ = 1 to λ = 1.5, to maximise the thermal efficiency in real time. The system adaptively accounts for changes in operating conditions such as ambient temperatures and user demands. The IMEP feedback allows the closed loop control system to update every few revolutions with short tune in times in the order of seconds. Open and closed loop test results are presented, demonstrating the incremental efficiency gains over fixed or mapped AFR control. The system continually adjusts the fuelling for maximum efficiency given its constraints and provides a basis for optimisation of future lean burn technologies.
Technical Paper

Advances in Combustion Systems for Gas Engines

2013-11-27
2013-01-2751
The paper presents a novel concept of a very efficient transportation engines for operation with CNG, LNG or LPG. The paper considers the options of single fuel design with jet ignition and dual fuel design with Diesel and gas. In the first option gas fuel is injected into the main chamber by a direct injector and ignited by jet ignition. In the second option gas fuel is injected into the main chamber by a direct injector and ignited by the direct injection of a small quantity of Diesel fuel. Injection and ignition may be tuned to control the amount of premixed and diffusion combustion to produce the best fuel conversion efficiency vs. load and speed requirements within the prescribed pressure and temperature constraints.
Technical Paper

Advances in Waste Heat Recovery Systems for Gas Engines

2013-09-24
2013-01-2433
The paper presents a novel concept of very efficient transportation engines for operation with CNG, LNG or LPG. The combustion system permits mixed diesel/gasoline-like operation changing the load by quantity of fuel injected and modulating the premixed and diffusion combustion phases for high fuel energy transfer to piston work. A waste heat recovery system (WHRS) is then recovering the intercooler and engine coolant energy plus the exhaust energy. The WHRS uses a power turbine on the exhaust and a steam turbine feed by a single loop turbo-steamer. The WHRS is the enabler of much faster warm up of the engine and further improvements of the top fuel conversion efficiency to above 50% for the specific case with reduced fuel efficiency penalties changing the load or the speed.
Technical Paper

Alternative Crankshaft Mechanisms and Kinetic Energy Recovery Systems for Improved Fuel Economy of Light Duty Vehicles

2011-09-13
2011-01-2191
The introduction of advanced internal combustion engine mechanisms and powertrains may improve the fuel conversion efficiency of an engine and thus reduce the amount of energy needed to power the vehicle. The paper presents a novel design of a variable compression ratio advanced spark ignition engine that also permits an expansion ratio that may differ from the induction stroke therefore generating an Atkinson cycle effect. The stroke ratio and the ratio of maximum to minimum in-cylinder volumes may change with load and speed to provide the best fuel conversion efficiency. The variable ratio of maximum to minimum in-cylinder volumes also improves the full load power output of the engine. Results of vehicle driving cycle simulations of a light-duty gasoline vehicle with the advanced engine show dramatic improvements of fuel economy.
Journal Article

An Integrated Model of Energy Transport in a Reciprocating, Lean Burn, Spark Ignition Engine

2015-04-14
2015-01-1659
This paper presents a combined experimental and numerical method for analysing energy flows within a spark ignition engine. Engine dynamometer data is combined with physical models of in-cylinder convection and the engine's thermal impedances, allowing closure of the First Law of Thermodynamics over the entire engine system. In contrast to almost all previous works, the coolant and metal temperatures are not assumed constant, but rather are outputs from this approach. This method is therefore expected to be most useful for lean burn engines, whose temperatures should depart most from normal experience. As an example of this method, the effects of normalised air-fuel ratio (λ), compression ratio and combustion chamber geometry are examined using a hydrogen-fueled engine operating from λ = 1.5 to λ = 6. This shows large variations in the in-cylinder wall temperatures and heat transfer with respect to λ.
Technical Paper

Analysis of the Regenerative Braking Efficiency of a Latest Electric Vehicle

2013-11-27
2013-01-2872
Kinetic energy recovery systems (KERS) placed on one axle coupled to a traditional thermal engine on the other axle is possibly the best solution presently available to dramatically improve the fuel economy while providing better performances within strict budget constraints. Different KERS may be built purely electric, purely mechanic, or hybrid mechanic/electric differing for round trip efficiency, packaging, weights, costs and requirement of further research and development. The paper presents an experimental analysis of the energy flow to and from the battery of a latest Nissan Leaf covering the Urban Dynamometer Driving Schedule (UDDS). This analysis provides a state-of-the-art benchmark of the propulsion and regenerative braking efficiencies of electric vehicles with off-the-shelve technologies.
Technical Paper

CAD/CFD/CAE Modelling of Wankel Engines for UAV

2015-09-15
2015-01-2466
The Wankel engine for Unmanned Aerial Vehicle (UAV) applications delivers advantages vs. piston engines of simplicity, smoothness, compactness and high power-to-weight ratio. The use of computational fluid dynamic (CFD) and computer aided engineering (CAE) tools may permit to address the major downfalls of these engines, namely the slow and incomplete combustion due to the low temperatures and the rotating combustion chambers. The paper proposes the results of CAD/CFD/CAE modelling of a Wankel engine featuring tangential jet ignition to produce faster and more complete combustion.
Technical Paper

CNG Fueling Strategies for Commercial Vehicles Engines-A Literature Review

2013-11-27
2013-01-2812
The paper presents a survey of the opportunities to convert compression ignition heavy duty truck engines to work on single or dual fuel modes with CNG. In one popular option, the compression ignition engine is converted to spark ignition with throttle load control and port injection of the CNG. In another option of increasing popularity, the LNG is directly injected and ignited by direct injection of pilot Diesel. This latter option with direct injection of natural gas and diesel through separate injectors that are fully independent in their operation is determined to be the most promising, as it is expected to deliver better power density and similar part load fuel economy to Diesel.
Technical Paper

CO2 Emission Benefits of Homogeneous Charge Compression Ignition and Direct Injection Compression Ignition Combustion

2021-09-22
2021-26-0423
The paper aims to provide an assessment of the Homogeneous Charge Compression Ignition (HCCI) combustion, compared to a well-established alternative such as Direct Injection Compression Ignition (DICI) combustion, under the criteria of CO2 emission reduction potential. The assessment is performed by reviewing the relevant literature and analyzing the commercial products available on the market that are featuring these two technologies. DICI engines have demonstrated in the real world the ability to deliver top fuel conversion efficiencies of about 50%, and fuel conversion efficiencies largely above 40% over most of the load and speed range. Research-only HCCI engines have delivered fuel efficiencies well below 40% in the very few carefully selected map points where they working during carefully performed laboratory experiments.
Technical Paper

Changes to Fim-Motogp Rules to Reduce Costs and Make Racing More Directly Relevant to Road Motorcycle Development

2008-12-02
2008-01-2957
The specific power densities and therefore the level of sophistication and costs of FIM-MOTOGP engines 800 cm3 in capacity have reached levels similar to those of the traditionally much more expensive FIA-Formula One engines and some racing developments have no application at all in the development of production bikes. The aim of the paper is therefore to review FIM-MOTOGP engine rules and make recommendations that could reduce costs and make racing more directly relevant to the development of production bikes while enhancing the significant interest in technical innovation by the sports' fans.
Technical Paper

Combustion System Development and Analysis of a Carbureted and PFI Normally Aspirated Small Engine

2010-09-28
2010-32-0095
This paper focuses on the combustion system development and combustion analysis results for a normally aspirated 0.43-liter small engine. The inline two-cylinder engine used in experiments has been tested in a variety of normally aspirated modes, using 98-RON pump gasoline. Test modes were defined by alterations to the induction system, which included carburetion and port fuel injection fuel delivery systems. The results from this paper provide some insight into the combustion effects for small cylinder normally aspirated spark ignition engines. This information provides future direction for the development of smaller engines as oil prices fluctuate and CO₂ emissions begin to be regulated. Small engine combustion is explored with a number of parametric studies, including a range of manifold absolute pressures up to wide open throttle, engine speeds exceeding 10,000 rev/min and compression ratios ranging from 9 to 13.
Journal Article

Combustion System Development and Analysis of a Downsized Highly Turbocharged PFI Small Engine

2010-09-28
2010-32-0093
This paper provides some insight into the future direction for developing smaller capacity downsized engines, which will be needed to meet tight CO₂ targets and the world's future powertrain requirements. This paper focuses on the combustion system development and combustion analysis results for a downsized 0.43-liter highly turbocharged engine. The inline two-cylinder engine used in experiments was specifically designed and constructed to enable 25 bar BMEP. Producing this specific output is one way forward for future passenger vehicle powertrains, enabling in excess of 50% swept capacity reduction whilst maintaining comparable vehicle performance. Previous experiments and analysis have found that the extent to which larger engines can be downsized while still maintaining equal performance is combustion limited.
Technical Paper

Comparing the Performance and Limitations of a Downsized Formula SAE Engine in Normally Aspirated, Supercharged and Turbocharged Modes

2006-11-13
2006-32-0072
This paper compares the performance of a small two cylinder, 430 cm3 engine which has been tested in a variety of normally aspirated (NA) and forced induction modes on 98-RON pump gasoline. These modes are defined by variations in the induction system and associated compression ratio (CR) alterations needed to avoid knock and maximize volumetric efficiency (ηVOL). These modes included: (A) NA with carburetion (B) NA with port fuel injection (PFI) (C) Mildly Supercharged (SC) with PFI (D) Highly Turbocharged (TC) with PFI The results have significant relevance in defining the limitations for small downsized spark ignition (SI) engines, with power increases needed via intake boosting to compensate for the reduced swept volume. Performance is compared in the varying modes with comparisons of brake mean effective pressure (BMEP), brake power, ηVOL, brake specific fuel consumption (BSFC) and brake thermal efficiency (ηTH).
X