Refine Your Search

Topic

Author

Search Results

Technical Paper

Application and Evaluation of the Eulerian-Lagrangian Spray Atomization (ELSA) Model on CFD Diesel Spray Simulations

2011-06-09
2011-37-0029
During the last fifteen years, Computational Fluid Dynamics (CFD) has become one of the most important tools to both understand and improve the diesel spray development in Internal Combustion Engine (ICE). Most of the approaches and models used pure Eulerian or Lagrangian descriptions to simulate the spray behavior. However, each one of them has both advantages and disadvantages in different regions of the spray, it can be the dense zone or the downstream dilute zone. One of the most promising techniques, which has been in development since ten years ago, is the Eulerian-Lagrangian Spray Atomization (ELSA) model. This is an integrated model for capturing the whole spray evolution, including primary break-up and secondary atomization. In this paper, the ELSA numerical modeling of diesel sprays implementation in Star-CD (2010) is studied, and simulated in comparison with the diesel spray which has been experimentally studied in our institute, CMT-Motores Térmicos.
Technical Paper

CFD Simulation to Understand Auto-Ignition Characteristics of Dual Fuel Strategies using High- and Low-Octane Fuels: A Step Towards The Octane-On-Demand Engine

2017-03-28
2017-01-1281
Reduction of CO2 emissions is becoming one of the great challenges for future gasoline engines. The aim of the current research program (OOD: Octane On Demand) is to use the octane number as a tuning parameter to simultaneously make the engine more efficient and reduce CO2 emissions. The idea is to prevent knock occurrence by adapting the fuel RON injected in the combustion chamber. Thus, the engine cycle efficiency is increased by keeping combustion phasing at its optimum. This is achieved by a dual fuel injection strategy, involving a low-RON base fuel (Naphtha or Low RON cost effective fuel) and a high-RON octane booster (ethanol). The ratio of fuel quantity on each injector is adapted at each engine cycle to fit the RON requirement as a function of engine operating conditions. A first part of the project, described in [18], was dedicated to the understanding of mixture preparation resulting from different dual-fuel injection strategies.
Technical Paper

Calibrating BEV and HEV Powertrains for Dynamic Performance Targets

2021-09-05
2021-24-0100
Calibrating a vehicle’s powertrain for dynamic operation needs to focus on efforts to mitigate the risks of thermal overload which may arise in the stator or rotor components of an e-motor. Risks also may arise for expected NVH or durability targets, with torque and torque “oscillations” acting as primary sources for the vehicles’ NVH behavior. Both topics, temperature measurement of stator and rotor as well as dynamic torque measurements of the powertrain’s drive shaft are addressed with examples demonstrating the sensors applications in normal test bed and vehicle configurations.
Technical Paper

Comparative Analysis of Axial Flux and Radial Flux Motors for UAV Propulsion: Design and Suitability Assessment

2024-06-01
2024-26-0467
In the architecture of an Unmanned Aerial Vehicle (UAV), a crucial component responsible for the propulsion system is the electric motor. Over the years, different types of electric motors, including Brushless Direct Current (BLDC), have supported the UAV’s propulsion system in diverse configurations. However, in the context of flux flow, the Radial Flux Permanent Magnet Motor (RFPMM) has been given more priority than the Axial Flux Permanent Magnet Motor (AFPMM) due to its sustainability in design and construction. Nevertheless, the AFPMM boasts higher speed, power density, lower weight, and greater efficiency than the RFPMM, because of its shorter flux path and the absence of end-turn winding. Therefore, this paper focuses on conducting a suitability analysis of an AFPMM as a shaft-connected propeller-mounted motor, with the intention of replacing the RFPMM in UAV applications.
Journal Article

Comparison between Internal and External EGR Performance on a Heavy Duty Diesel Engine by Means of a Refined 1D Fluid-Dynamic Engine Model

2015-09-06
2015-24-2389
The potential of internal EGR (iEGR) and external EGR (eEGR) in reducing the engine-out NOx emissions in a heavy-duty diesel engine has been investigated by means of a refined 1D fluid-dynamic engine model developed in the GT-Power environment. The engine is equipped with Variable Valve Actuation (VVA) and Variable Geometry Turbocharger (VGT) systems. The activity was carried out in the frame of the CORE Collaborative Project of the European Community, VII FP. The engine model integrates an innovative 0D predictive combustion algorithm for the simulation of the HRR (heat release rate) based on the accumulated fuel mass approach and a multi-zone thermodynamic model for the simulation of the in-cylinder temperatures. NOx emissions are calculated by means of the Zeldovich thermal and prompt mechanisms.
Technical Paper

Coupled Fluid-Solid Simulation for the Prediction of Gas-Exposed Surface Temperature Distribution in a SI Engine

2017-03-28
2017-01-0669
The current trend of downsizing used in gasoline engines, while reducing fuel consumption and CO2 emissions, imposes severe thermal loads inside the combustion chamber. These critical thermodynamic conditions lead to the possible auto-ignition (AI) of fresh gases hot-spots around Top-Dead-Center (TDC). At this very moment where the surface to volume ratio is high, wall heat transfer influences the temperature field inside the combustion chamber. The use of a realistic wall temperature distribution becomes important in the case of a downsized engine where fresh gases hot spots found near high temperature walls can initiate auto-ignition. This paper presents a comprehensive numerical methodology for an accurately prediction of thermodynamic conditions inside the combustion chamber based on Conjugate Heat Transfer (CHT).
Technical Paper

Design of a Ballistic Composite Cover Plate for Armoured Fighting Vehicles

2018-07-09
2018-28-0008
Armoured fighting vehicles such as Main Battle Tank (MBT) operate in a variety of theatres right starting from desert, marshes to high altitude areas. To deploy and operate such platforms, strategic, tactical and battlefield mobility have to be higher, for which combat mass of the platform is a critical parameter. To keep this parameter within optimum limits, overall mass reduction of the platform is crucial, which is also challenging as the structure has to offer not only strength and rigidity but also ballistic protection. This challenge is further complicated if the panel or component is exposed to high temperature. This paper tries to address these design challenges through a case study, wherein a composite cover plate made of Ceramic tiles, Kevlar, Foam with stainless steel sheets as backings in a sandwich construction is presented. The complete design and iteration methodology is first explained in detail along with constraints.
Journal Article

Development of a High Performance Natural Gas Engine with Direct Gas Injection and Variable Valve Actuation

2017-09-04
2017-24-0152
Natural gas is a promising alternative fuel for internal combustion engine application due to its low carbon content and high knock resistance. Performance of natural gas engines is further improved if direct injection, high turbocharger boost level, and variable valve actuation (VVA) are adopted. Also, relevant efficiency benefits can be obtained through downsizing. However, mixture quality resulting from direct gas injection has proven to be problematic. This work aims at developing a mono-fuel small-displacement turbocharged compressed natural gas engine with side-mounted direct injector and advanced VVA system. An injector configuration was designed in order to enhance the overall engine tumble and thus overcome low penetration.
Technical Paper

Direct Injection of CNG on High Compression Ratio Spark Ignition Engine: Numerical and Experimental Investigation

2011-04-12
2011-01-0923
CNG is one of the most promising alternate fuels for passenger car applications. CNG is affordable, is available worldwide and has good intrinsic properties including high knock resistance and low carbon content. Usually, CNG engines are developed by integrating CNG injectors in the intake manifold of a baseline gasoline engine, thereby remaining gasoline compliant. However, this does not lead to a bi-fuel engine but instead to a compromised solution for both Gasoline and CNG operation. The aim of the study was to evaluate the potential of a direct injection spark ignition engine derived from a diesel engine core and dedicated to CNG combustion. The main modification was the new design of the cylinder head and the piston crown to optimize the combustion velocity thanks to a high tumble level and good mixing. This work was done through computations. First, a 3D model was developed for the CFD simulation of CNG direct injection.
Technical Paper

Effect of Deadweight on Frame and Correlation with Human Passenger in a Two Wheeler

2023-11-08
2023-01-5080
Deadweight as payload is an important parameter, which affects the vehicle dynamics and durability of the vehicle. This paper presents a study performed to evaluate the effect of deadweight on dynamic input load, suspension operation, and fatigue life of frame in a two wheeler. Also, an optimization exercise was undertaken to correlate and optimize deadweight with a human payload in terms of equivalent damage to the frame. Strain, wheel acceleration, and suspension displacement data were acquired with pillion and multiple deadweights and compared. Relative damage spectrum (RDS) characterization and best-fit optimization methods were used for deadweight correlation. It was observed that with deadweight addition dynamic loads decreases on the front wheel while increases on the rear. Strain damage wise increasing deadweights have marginal effects on the front zone of the frame while on the middle and rear side, deadweights are detrimental.
Journal Article

Effects of Methane/Hydrogen Blends On Engine Operation: Experimental And Numerical Investigation of Different Combustion Modes

2010-10-25
2010-01-2165
The introduction of alternative fuels is crucial to limit greenhouse gases. CNG is regarded as one of the most promising clean fuels given its worldwide availability, its low price and its intrinsic properties (high knocking resistance, low carbon content...). One way to optimize dedicated natural gas engines is to improve the CNG slow burning velocity compared to gasoline fuel and allow lean burn combustion mode. Besides optimization of the combustion chamber design, hydrogen addition to CNG is a promising solution to boost the combustion thanks to its fast burning rate, its wide flammability limits and its low quenching gap. This paper presents an investigation of different methane/hydrogen blends between 0% and 40 vol. % hydrogen ratio for three different combustion modes: stoichiometric, lean-burn and stoichiometric with EGR.
Technical Paper

Engine Knock Prediction and Evaluation Based on Detonation Theory Using a Quasi-Dimensional Stochastic Reactor Model

2017-03-28
2017-01-0538
Engine knock is an important phenomenon that needs consideration in the development of gasoline fueled engines. In our days, this development is supported by the use of numerical simulation tools to further understand and subsequently predict in-cylinder processes. In this work, a model tool chain based on detailed chemical and physical models is proposed to predict the auto-ignition behavior of fuels with different octane ratings and to evaluate the transition from harmless auto-ignitive deflagration to knocking combustion. In our method, the auto-ignition and emissions are calculated based on a new reaction scheme for mixtures of iso-octane, n-heptane, toluene and ethanol (Ethanol consisting Toluene Reference Fuel, ETRF). The reaction scheme is validated for a wide range of mixtures and every desired mixture of the four fuel components can be applied in the engine simulation.
Technical Paper

Evaluation of Flow Paths due to Leakages of Flammable Liquids by the SPH Method: Application to Real Engines

2020-04-14
2020-01-1111
One of the most important safety issues for automotive engineering is to avoid any fire due to the ignition of flammable liquids, which may result from leaks. Fire risk is a combination of hot temperature, fast vaporisation and accumulation of vapor in a cavity. In IC engines, potentially flammable liquids are fuel and oil. To guarantee safety, flammable liquids must not come into contact with hot parts of the engine. Consequently, shields are designed to guide the flow path of possible leakages and to take any flammable liquid out of the hot areas. Simulation is a great help to optimize the shape of the shield by investigating a large number of possible leakages rapidly. Recent breakthroughs in numerical methods make it possible to apply simulations to industrial design concepts. The employed approach is based on the Lagrangian Smoothed Particle Hydrodynamics (SPH) method.
Technical Paper

Experimental and Numerical Analysis of Diluted Combustion in a Direct Injection CNG Engine Featuring Post- Euro-VI Fuel Consumption Targets

2018-04-03
2018-01-1142
The present paper is concerned with part of the work performed by Renault, IFPEN and Politecnico di Torino within a research project founded by the European Commission. The project has been focused on the development of a dedicated CNG engine featuring a 25% decrease in fuel consumption with respect to an equivalent Diesel engine with the same performance targets. To that end, different technologies were implemented and optimized in the engine, namely, direct injection, variable valve timing, LP EGR with advanced turbocharging, and diluted combustion. With specific reference to diluted combustion, it is rather well established for gasoline engines whereas it still poses several critical issues for CNG ones, mainly due to the lower exhaust temperatures. Moreover, dilution is accompanied by a decrease in the laminar burning speed of the unburned mixture and this generally leads to a detriment in combustion efficiency and stability.
Technical Paper

Experimental and Numerical Investigation on Hydrogen Internal Combustion Engine

2021-09-05
2021-24-0060
Hydrogen may be used to feed a fuel cell or directly an internal combustion engine as an alternative to current fossil fuels. The latter option offers the advantages of already existing hydrocarbon fuel engines - autonomy, pre-existing and proven technology, lifetime, controlled cost, existing industrial tools and short time to market - with a very low carbon footprint and high tolerance to low purity hydrogen. Hydrogen is expected to be relevant for light and heavy duty applications as well as for off road applications, but currently most of research focus on small engine and especially spark ignition engine which is easily adaptable. This guided us to select modern high-efficient gasoline-based engines to start the investigation of hydrogen internal combustion engine development. This study aims to access the properties and limitations of hydrogen combustion on a high-efficiency spark ignited single cylinder engine with the support of the 3D-CFD computation.
Technical Paper

Experiments and Modeling of Flame/Wall Interaction in Spark-Ignition (SI) Engine Conditions

2013-04-08
2013-01-1121
Dedicated experiments were performed in an optically-accessible, constant volume combustion vessel whose geometry and aerodynamic flow was representative of a pentroof SI engine combustion chamber. A detailed characterization of the flowfield was conducted in several near-wall regions where flame-wall interaction occurs using high-speed Particle Image Velocimetry (PIV). Simultaneous heat flux measurements were also performed at these same spatial locations. From a numerical point of view, current Reynolds Averaged Navier Stokes (RANS) or Large Eddy Simulation (LES) models take into account the effects of the wall on the flame however the effects of the turbulent flame-wall interaction on wall heat flux are not accounted for. Direct Numerical Simulations (DNS) of a 2D, premixed, steady-state V-flame were performed in order to aid the development and validation of a new model based on the flame surface density concept in order to take into account flame-wall interaction effects [1].
Technical Paper

Fluid-Dynamic Modeling and Advanced Control Strategies for a Gaseous-Fuel Injection System

2014-04-01
2014-01-1096
Sustainable mobility has become a major issue for internal combustion engines and has led to increasing research efforts in the field of alternative fuels, such as bio-fuel, CNG and hydrogen addition, as well as into engine design and control optimization. To that end, a thorough control of the air-to-fuel ratio appears to be mandatory in SI engine in order to meet the even more stringent thresholds set by the current regulations. The accuracy of the air/fuel mixture highly depends on the injection system dynamic behavior and to its coupling to the engine fluid-dynamic. Thus, a sound investigation into the mixing process can only be achieved provided that a proper analysis of the injection rail and of the injectors is carried out. The present paper carries out a numerical investigation into the fluid dynamic behavior of a commercial CNG injection system by means of a 0D-1D code.
Technical Paper

Modeling of Benzene Formation in Rich Premixed Flames

2007-01-23
2007-01-0052
A modeling study of benzene formation was performed in five low-pressure, rich, laminar premixed flames with acetylene, ethylene, propene, benzene and heptane as fuels. Three published detailed reaction mechanisms were tested against molecular beam mass spectrometry (MBMS) species profiles for each flame. Differences between the three mechanisms were explored with emphasis put on benzene and acetylene profiles. It results from this study that the C3H3 path plays a major role in benzene formation whereas the C4 route is negligible. Better results obtained with Kyne's mechanism can be explained by the reversibility of the C3H3 + C3H3 = C6H6 reaction.
Technical Paper

Modeling of HCCI Combustion by One Step Reaction Function: In View of Assisting the Optimization of Engine Management System

2007-09-16
2007-24-0033
Homogeneous charge compression ignition (HCCI) is one of the alternatives to reduce significantly diesel engine emissions for the future emissions regulations. This new alternative combustion process is mainly controlled by chemical kinetics, unlike conventional combustion in internal combustion engines. To satisfy the different modes of operation, the tuning of HCCI engines requires a large number of tests which are time-consuming and very expensive. To reduce the number of tests, a model with a very short computational time to simulate the engine in the whole operating range is needed; therefore the goal of this study is to provide the engine manufacturers with a simple physical combustion model to assist engine tuning and engine management system optimization, with the aim of predicting in-cylinder pressure evolutions and mean effective pressure (IMEP).
Journal Article

Multi-Dimensional Modeling of Direct Natural-Gas Injection and Mixture Formation in a Stratified-Charge SI Engine with Centrally Mounted Injector

2008-04-14
2008-01-0975
Direct injection (DI) of natural gas (NG) at high pressure conditions has emerged as a high-potential strategy for improving SI engine performance. Besides, DI allows an increase in the fuel economy, due to the possibility of a significant engine dethrottling at partial load. The high-pressure gas injection can also increase the turbulence level of mixture and thus the overall fuel-air mixing. Since direct NG injection is an emerging technology, there is a lack of experience on the optimum configuration of the injection system and the associated combustion chamber design. In the last few years, some numerical investigations of gas injection have been made, mainly oriented at the development of reliable numerical investigation tools. The present paper is concerned with the development and application of a numerical Star-CD based model for the investigation of the direct NG injection process from a poppet-valve injector into a bowl-piston engine combustion chamber.
X