Refine Your Search

Topic

Search Results

Technical Paper

A Thermal Conductivity Approach for Measuring Hydrogen in Engine Exhaust

2004-10-25
2004-01-2908
Thermal conductivity detection has long been used in gas chromatography to detect hydrogen and other diatomic gases in a gas sample. Thermal conductivity instruments that are not coupled to gas chromatographs are useful for detecting hydrogen in binary gas mixtures, but suffer from significant cross-interference from other gas species that are separated when the detector is used with a gas chromatograph. This study reports a method for using a commercially-available thermal conductivity instrument to detect and quantify hydrogen in a diesel exhaust stream. The instrument time response of approximately 40 seconds is sufficient for steady-state applications. Cross-interference from relevant gas species are quantified and discussed. Measurement uncertainty associated with the corrections for the various species is estimated and practical implications for use of the instrument and method are discussed.
Technical Paper

Analysis of Lacquer Deposits and Plugging Found in Field-Tested EGR Coolers

2014-04-01
2014-01-0629
All high-pressure exhaust gas recirculation (EGR) coolers become fouled during operation due to thermophoresis of particulate matter and condensation of hydrocarbons present in diesel exhaust. In some EGR coolers, fouling is so severe that deposits form plugs strong enough to occlude the gas passages thereby causing a complete failure of the EGR system. In order to better understand plugging and means of reducing its undesirable performance degradation, EGR coolers exhibiting plugging were requested from and provided by industry EGR engineers. Two of these coolers contained glassy, brittle, lacquer-like deposits which were analyzed using gas chromatography-mass spectrometry (GC-MS) which identified large amounts of oxygenated polycyclic aromatic hydrocarbons (PAHs). Another cooler exhibited similar species to the lacquer but at a lower concentration with more soot.
Journal Article

Analytical Examination of the Relationship between Fuel Properties, Engine Efficiency, and R Factor Values

2019-04-02
2019-01-0309
The variability in gasoline energy content, though most frequently not a consumer concern, is an issue of concern for vehicle manufacturers in demonstrating compliance with regulatory requirements. Advancements in both vehicle technology, test methodology, and fuel formulations have increased the level of visibility and concern with regard to the energy content of fuels used for regulatory testing. The R factor was introduced into fuel economy calculations for vehicle certification in the late 1980s as a means of addressing batch-to-batch variations in the heating value of certification fuels and the resulting variations in fuel economy results. Although previous studies have investigated values of the R factor for modern vehicles through experimentation, subsequent engine studies have made clear that it is difficult to distinguish between the confounding factors that influence engine efficiency when R is being studied experimentally.
Journal Article

Carbonyl Formation during High Efficiency Clean Combustion of FACE Fuels

2010-10-25
2010-01-2212
The low temperature conditions that occur during high efficiency clean combustion (HECC) often lead to the formation of partially oxidized HC species such as aldehydes, ketones and carboxylic acids. Using the diesel fuels specified by the Fuels for Advanced Combustion Engines (FACE) working group, carbonyl species were collected from the exhaust of a light duty diesel engine operating under HECC conditions. High pressure liquid chromatography - mass spectrometry (LC-MS) was used to speciate carbonyls as large as C 9 . A relationship between carbonyl species formed in the exhaust and fuel composition and properties was determined. Data were collected at the optimum fuel efficiency point for a typical road load condition. Results of the carbonyl analysis showed changes in formaldehyde and acetaldehyde formation, formation of higher molecular weight carbonyls and the formation of aromatic carbonyls.
Journal Article

Characterization of Field-Aged EGR Cooler Deposits

2010-10-25
2010-01-2091
Exhaust gas recirculation (EGR) cooler fouling has become a significant issue for compliance with nitrogen oxides (NOx) emissions standards. In order to better understand fouling mechanisms, eleven field-aged EGR coolers provided by seven different engine manufacturers were characterized using a suite of techniques. Microstructures were characterized using scanning electron microscopy (SEM) and optical microscopy following mounting the samples in epoxy and polishing. Optical microscopy was able to discern the location of hydrocarbons in the polished cross-sections. Chemical compositions were measured using thermal gravimetric analysis (TGA), differential thermal analysis (DTA), gas chromatography-mass spectrometry (GC-MS), x-ray photoelectron spectroscopy (XPS), energy dispersive spectroscopy (EDS) and x-ray diffraction (XRD). Mass per unit area along the length of the coolers was also measured.
Journal Article

Determination of the R Factor for Fuel Economy Calculations Using Ethanol-Blended Fuels over Two Test Cycles

2014-04-01
2014-01-1572
During the 1980s, the U.S. Environmental Protection Agency (EPA) incorporated the R factor into fuel economy calculations in order to address concerns about the impacts of test fuel property variations on corporate average fuel economy (CAFE) compliance, which is determined using the Federal Test Procedure (FTP) and Highway Fuel Economy Test (HFET) cycles. The R factor is defined as the ratio of the percent change in fuel economy to the percent change in volumetric heating value for tests conducted using two differing fuels. At the time the R-factor was devised, tests using representative vehicles initially indicated that an appropriate value for the R factor was 0.6. Reassessing the R factor has recently come under renewed interest after EPA's March 2013 proposal to adjust the properties of certification gasoline to contain significant amounts of ethanol.
Journal Article

Diesel EGR Cooler Fouling

2008-10-06
2008-01-2475
The buildup of deposits in EGR coolers causes significant degradation in heat transfer performance, often on the order of 20-30%. Deposits also increase pressure drop across coolers and thus may degrade engine efficiency under some operating conditions. It is unlikely that EGR cooler deposits can be prevented from forming when soot and HC are present. The presence of cooled surfaces will cause thermophoretic soot deposition and condensation of HC and acids. While this can be affected by engine calibration, it probably cannot be eliminated as long as cooled EGR is required for emission control. It is generally felt that “dry fluffy” soot is less likely to cause major fouling than “heavy wet” soot. An oxidation catalyst in the EGR line can remove HC and has been shown to reduce fouling in some applications. The combination of an oxidation catalyst and a wall-flow filter largely eliminates fouling. Various EGR cooler designs affect details of deposit formation.
Technical Paper

Direct Measurement of EGR Cooler Deposit Thermal Properties for Improved Understanding of Cooler Fouling

2009-04-20
2009-01-1461
Exhaust gas recirculation (EGR) cooler fouling has become a significant issue for compliance with NOx emissions standards. This paper reports results of a study of fundamental aspects of EGR cooler fouling. An apparatus and procedure were developed to allow surrogate EGR cooler tubes to be exposed to diesel engine exhaust under controlled conditions. The resulting fouled tubes were removed and analyzed. Volatile and non-volatile deposit mass was measured for each tube. Thermal diffusivity of the deposited soot cake was measured by milling a window into the tube and using the Xenon flash lamp method. The heat capacity of the deposit was measured at temperatures up to 430°C and was slightly higher than graphite, presumably due to the presence of hydrocarbons. These measurements were combined to allow calculation of the deposit thermal conductivity, which was determined to be 0.041 W/mK, only ∼1.5 times that of air and much lower than the 304 stainless steel tube (14.7 W/mK).
Technical Paper

EGR Cooler Performance and Degradation: Effects of Biodiesel Blends

2008-10-06
2008-01-2473
Exhaust gas recirculation (EGR) coolers experience degradation of performance as a result of the buildup of material in the gas-side flow paths of the cooler. This material forms a deposit layer that is less thermally conductive than the stainless steel of the tube enclosing the gas, resulting in lower heat exchanger effectiveness. Biodiesel fuel has a fuel chemistry that is much more susceptible to polymerization than that of typical diesel fuels and may exacerbate deposit formation in EGR coolers. A study was undertaken to examine the fundamentals of EGR cooler deposit formation by using surrogate tubes to represent the EGR cooler. These tubes were exposed to engine exhaust in a controlled manner to assess their effectiveness, deposit mass, and deposit hydrocarbon content. The tubes were exposed to exhaust for varying lengths of time and for varying coolant temperatures. The results show that measurable differences in the response variables occur within a few hours.
Technical Paper

Effectiveness Stabilization and Plugging in EGR Cooler Fouling

2014-04-01
2014-01-0640
Fouling in EGR coolers occurs because of the presence of soot and condensable species (such as hydrocarbons) in the gas stream. Fouling leads to one of two possible outcomes: stabilization of effectiveness and plugging of the gas passages within the cooler. Deposit formation in the cooler under high-temperature conditions results in a fractal deposit that has a characteristic thermal conductivity of ∼0.033 W/m*K and a density of 0.0224 g/cm3. Effectiveness becomes much less sensitive to changes in thermal resistance as fouling proceeds, creating the appearance of “stabilization” even in the presence of ongoing, albeit slow, deposit growth. Plugging occurs when the deposit thermal resistance is several times lower because of the presence of large amounts of condensed species. The deposition mechanism in this case appears to be soot deposition into a liquid film, which results in increased packing efficiency and decreased void space in the deposit relative to high-temperature deposits.
Technical Paper

Emissions Results for Dedicated Propane Chrysler Minivans: The 1996 Propane Vehicle Challenge

1997-02-24
970808
The U.S. Department of Energy, through Argonne National Laboratory, and in cooperation with Natural Resources-Canada and Chrysler Canada, sponsored and organized the 1996 Propane Vehicle Challenge (PVC). For this competition, 13 university teams from North America each received a stock Chrysler minivan to be converted to dedicated propane operation while maintaining maximum production feasibility. The converted vehicles were tested for performance (driveability, cold- and hot-start, acceleration, range, and fuel economy) and exhaust emissions. Of the 13 entries for the 1996 PVC, 10 completed all of the events scheduled, including the emissions test. The schools used a variety of fuel-management, fuel-phase and engine-control strategies, but their strategies can be summarized as three main types: liquid fuel-injection, gaseous fuel-injection, and gaseous carburetor. The converted vehicles performed similarly to the gasoline minivan.
Journal Article

Estimation of the Fuel Efficiency Potential of Six Gasoline Blendstocks Identified by the U.S. Department of Energy’s Co-Optimization of Fuels and Engines Program

2019-01-15
2019-01-0017
Six blendstocks identified by the Co-Optimization of Fuels & Engines Program were used to prepare fuel blends using a fixed blendstock for oxygenate blending and a target RON of 97. The blendstocks included ethanol, n-propanol, isopropanol, isobutanol, diisobutylene, and a bioreformate surrogate. The blends were analyzed and used to establish interaction factors for a non-linear molar blending model that was used to predict RON and MON of volumetric blends of the blendstocks up to 35 vol%. Projections of efficiency increase, volumetric fuel economy increase, and tailpipe CO2 emissions decrease were produced using two different estimation techniques to evaluate the potential benefits of the blendstocks. Ethanol was projected to provide the greatest benefits in efficiency and tailpipe CO2 emissions, but at intermediate levels of volumetric fuel economy increase over a smaller range of blends than other blendstocks.
Technical Paper

Experimental Investigation of the Effects of Fuel Characteristics on High Efficiency Clean Combustion in a Light-Duty Diesel Engine

2009-11-02
2009-01-2669
An experimental study was performed to understand fuel property effects on low temperature combustion (LTC) processes in a light-duty diesel engine. These types of combustion modes are often collectively referred to as high efficiency clean combustion (HECC). A statistically designed set of research fuels, the Fuels for Advanced Combustion Engines (FACE), were used for this study. Engine conditions of 1500rpm, 2.6bar BMEP was chosen for investigating fuel property effects on HECC operation in a GM 1.9-L common rail diesel engine. The FACE fuel matrix includes nine combinations of fuel properties including cetane number (30 to 55), aromatic content (20 to 45%), and 90% distillation temperature (270 to 340°C). HECC operation was achieved with high levels of exhaust gas recirculation (EGR) and adjusting injection parameters, such as higher fuel rail pressure and single injection event, which is also known as premixed charge compression ignition (PCCI) combustion.
Journal Article

Exploring the Relationship Between Octane Sensitivity and Heat-of-Vaporization

2016-04-05
2016-01-0836
The latent heat-of-vaporization (HoV) of blends of biofuel and hydrocarbon components into gasolines has recently experienced expanded interest because of the potential for increased HoV to increase fuel knock resistance in direct-injection (DI) engines. Several studies have been conducted, with some studies identifying an additional anti-knock benefit from HoV and others failing to arrive at the same conclusion. Consideration of these studies holistically shows that they can be grouped according to the level of fuel octane sensitivity variation within their fuel matrices. When comparing fuels of different octane sensitivity significant additional anti-knock benefits associated with HoV are sometimes observed. Studies that fix the octane sensitivity find that HoV does not produce additional anti-knock benefit. New studies were performed at ORNL and NREL to further investigate the relationship between HoV and octane sensitivity.
Technical Paper

Fuel Property Effects on Emissions from High Efficiency Clean Combustion in a Diesel Engine

2006-04-03
2006-01-0080
High-efficiency clean combustion (HECC) modes provide simultaneous reductions in diesel particulate matter and nitrogen-oxides emissions while retaining efficiencies characteristic of normal diesel engines. Fuel parameters may have significant impacts on the ability to operate in HECC modes and on the emissions produced in HECC modes. In this study, 3 diesel-range fuels and 2 oxygenated blends are burned in both normal and HECC modes at 3 different engine conditions. The results show that fuel effects play an important role in the emissions of hydrocarbons, particulate matter, and carbon monoxide but do not significantly impact NOx emissions in HECC modes. HECC modes are achievable with 5% biodiesel blends in addition to petroleum-based and oil-sands derived fuels. Soot precursor and oxygenated compound concentrations in the exhaust were observed to generally increase with the sooting tendency of the fuel in HECC modes.
Journal Article

Hydrocarbons and Particulate Matter in EGR Cooler Deposits: Effects of Gas Flow Rate, Coolant Temperature, and Oxidation Catalyst

2008-10-06
2008-01-2467
Compact heat exchangers are commonly used in diesel engines to reduce the temperature of recirculated exhaust gases, resulting in decreased NOx emissions. These exhaust gas recirculation (EGR) coolers experience fouling through deposition of particulate matter (PM) and hydrocarbons (HCs) that reduces the effectiveness of the cooler. Surrogate tubes have been used to investigate the impacts of gas flow rate and coolant temperature on the deposition of PM and HCs. The results indicate that mass deposition is lowest at high flow rates and high coolant temperatures. An oxidation catalyst was investigated and proved to effectively reduce deposition of HCs, but did not reduce overall mass deposition to near-zero levels. Speciation of the deposit HCs showed that a range of HCs from C15 - C25 were deposited and retained in the surrogate tubes.
Journal Article

Investigating Malfunction Indicator Light Illumination Due to Increased Oxygenate Use in Gasoline

2012-11-15
2012-01-2305
The Energy Independence and Security Act of 2007 requires the U.S. to use 36 billion gallons of renewable fuel per year by 2022. Domestic ethanol production has increased steadily in recent years, growing from less than 5 billion gallons per year (bgpy) in 2006 to over 13 bgpy in 2010. While there is interest in developing non-oxygenated renewable fuels for use in conventional vehicles as well as interest in expanding flex-fuel vehicle (FFV) production for increased E85 use, there remains concern that EISA compliance will require further use of oxygenated biofuels in conventional vehicles. The Environmental Protection Agency (EPA) recently granted partial approval to a waiver allowing the use of E15 in 2001 and newer light-duty vehicles.
Technical Paper

Lubricating Oil Consumption on the Standard Road Cycle

2013-04-08
2013-01-0884
Automobile manufacturers strive to minimize oil consumption from their engines due to the need to maintain emissions compliance over the vehicle life. Engine oil can contribute directly to organic gas and particle emissions as well as accelerate emissions degradation due to catalyst poisoning. During the Department of Energy Intermediate Ethanol Blends Catalyst Durability program, vehicles were aged using the Standard Road Cycle (SRC). In this program, matched sets of three or four vehicles were acquired; each vehicle of a set was aged on ethanol-free retail gasoline, or the same base gasoline blended with 10, 15, or 20% ethanol (E0, E10, E15, E20). The primary purpose of the program was to assess any changes in tailpipe emissions due to the use of increased levels of ethanol. Oil consumption was tracked during the program so that any measured emissions degradation could be appropriately attributed to fuel use or to excessive oil consumption.
Technical Paper

Microstructural Analysis of Deposits on Heavy-Duty EGR Coolers

2013-04-08
2013-01-1288
Exhaust gas recirculation (EGR) cooler fouling has become a significant issue for compliance with NOX emissions standards and has negative impacts on cooler sizing and engine performance. In order to improve our knowledge of cooler fouling as a function of engine operating parameters and to predict and enhance performance, 19 tube-in-shell EGR coolers were fouled using a 5-factor, 3-level design of experiments with the following variables: (1) EGR flow rate, (2) EGR inlet gas temperature, (3) coolant temperature, (4) soot level, and (5) hydrocarbon concentration. A 9-liter engine and ULSD fuel were used to form the cooler deposits. Coolers were run until the effectiveness stabilized, and then were cooled down to room temperature and run for an additional few hours in order to measure the change in effectiveness due to shut down. The coolers were cut open and the mass per unit area of the deposit was measured as a function of distance down the tube.
Journal Article

Mixed-Source EGR for Enabling High Efficiency Clean Combustion Modes in a Light-Duty Diesel Engine

2008-04-14
2008-01-0645
The source of exhaust gas recirculation (EGR), and consequently composition and temperature, has a significant effect on advanced combustion modes including stability, efficiency, and emissions. The effects of high-pressure loop EGR (HPL EGR) and low-pressure loop EGR (LPL EGR) on achieving high efficiency clean combustion (HECC) modes in a light-duty diesel engine were characterized in this study. High dilution operation is complicated in real-world situations due to inadequate control of mixture temperature and the slow response of LPL EGR systems. Mixed-source EGR (combination of HPL EGR and LPL EGR) was investigated as a reasonable approach for controlling mixture temperature. The potential of mixed-source EGR has been explored using LPL EGR as a ‘base’ for dilution rather than as a sole source. HPL EGR provides the ‘trim’ for controlling mixture temperature and has the potential for enabling precise control of dilution targets.
X