Refine Your Search

Search Results

Viewing 1 to 10 of 10
Journal Article

Characteristics of High Pressure Jets for Direct Injection Gas Engine

2013-04-08
2013-01-1619
The direct injection (DI) natural gas engine is considered as one of the promising technologies to achieve the continuing goals of the higher efficiency and reduced emissions for internal combustion engines. Shock wave phenomena can easily occur near the nozzle exit when high pressure gaseous fuel is injected directly into the engine cylinder. In the present study, high pressure gas issuing from a prototype gas injector was experimentally studied using planar laser-induced fluorescence (PLIF) technique. Acetone was selected as a fuel tracer. The effects of injection pressures on the flow structure and turbulent mixing were investigated based on a series of high resolution images. The jet macroscopic structures, such as jet penetration, cone angle and jet volume, are analyzed under different injection pressures. Results show that barrel shock waves can significantly influence the jet flow structure and turbulent mixing.
Technical Paper

Comparing Breakup Models in a Novel High Injection Pressure SCR System using Polyhedral Meshing

2014-10-13
2014-01-2816
A novel high pressure SCR spray system is investigated both experimentally and numerically. RANS simulations are performed using Star-CD and polyhedral meshing. This is one of the first studies to compare droplet breakup models and AdBlue injection with high injection pressure (Pinj=200 bar). The breakup models compared are the Reitz-Diwakar (RD), the Kelvin-Helmholtz and Rayleigh-Taylor (KHRT), and the Enhanced Taylor Analogy Breakup (ETAB) model. The models are compared with standard model parameters typically used in diesel fuel injection studies to assess their performance without any significant parameter tuning. Experimental evidence from similar systems seems to be scarce on high pressure AdBlue (or water) sprays using plain hole nozzles. Due to this, it is difficult to estimate a realistic droplet size distribution accurately. Thereby, there is potential for new experimental data to be made with high pressure AdBlue or water sprays.
Technical Paper

Comparison Between Single-Step and Two-Step Chemistry in a Compression Ignition Free Piston Engine

2000-10-16
2000-01-2937
The focus of this paper is to compare results from 3D combustion simulations when using either a single-step or a two-step description of the chemistry of combustion in a two stroke free piston diesel engine. To reduce the computational cost, only one sector of the whole cylinder is computed, i.e. one fuel spray. The simulation starts after the exhaust ports are closed and ends before the exhaust ports opening. The fuel injection is described by a Lagrangian method where the break up and interaction of the droplets are taken into account as well as droplet wall interaction and evaporation. Turbulence is modeled using the standard high Reynolds number k-ε model. The combustion of fuel vapor is modeled by the the Eddy Dissipation Combustion Model (EDCM). In the case of two-step chemistry, the combustion of CO is taken into account. The kinetic rate of CO combustion is determined from a global expression.
Technical Paper

Computational Considerations of Fuel Spray Mixing in an HCCI Operated Optical Diesel Engine

2009-04-20
2009-01-0710
Fuel spray mixing has been analyzed numerically in a single-cylinder optical research engine with a flat piston top. In the study, a narrow spray angle has been used to align the sprays towards the piston top. Fuel spray mass flow rate has been simulated with 1-D code in order to have reliable boundary condition for the CFD simulations. Different start of fuel injections were tested as well as three charge air pressures and two initial mixture temperatures. Quantitative analysis was performed for the evaporation rates, mixture homogeneity at top dead center, and for the local air-fuel ratios. One of the observations of this study was that there exists an optimum start of fuel injection when the rate of spray evaporation and the mixture homogeneity are considered.
Technical Paper

Conjugate Heat Transfer in CI Engine CFD Simulations

2008-04-14
2008-01-0973
The development of new high power diesel engines is continually going for increased mean effective pressures and consequently increased thermal loads on combustion chamber walls close to the limits of endurance. Therefore accurate CFD simulation of conjugate heat transfer on the walls becomes a very important part of the development. In this study the heat transfer and temperature on piston surface was studied using conjugate heat transfer model along with a variety of near wall treatments for turbulence. New wall functions that account for variable density were implemented and tested against standard wall functions and against the hybrid near wall treatment readily available in a CFD software Star-CD.
Technical Paper

Experimental Study on Engine Performance Fueled with Ammonia-Hydrogen Blend Ignited by Diesel Pilot

2024-04-09
2024-01-2365
The global energy crisis and drastic climate change are continuously promoting the implementation of sustainable energy sources. To meet the emission standards and carbon-neutrality targets in vehicle industry, ammonia is considered to be one of the promising carbon-neutral fuels. However, running the engines on high amounts of ammonia may lead to significantly high ammonia slip. This originates huge safety concerns. Therefore, hydrogen is added in certain ratio with ammonia to promote combustion and reduce ammonia slip. Furthermore, adding diesel as a pilot fuel further facilitates the combustion reactions. This experimental study investigated the effect of different ammonia-hydrogen blend ratios on in-cylinder pressure, heat release rate, cumulative heat release, indicated mean effective pressure (IMEP), indicated thermal efficiency (ITE), CA5 and CA50. This effect of blend ratios was tested for varied diesel pilot amounts and timings.
Technical Paper

Experimental and Numerical Investigation of Hydrogen Jet-Wall Impingement

2022-08-30
2022-01-1009
Decarbonization of the automotive industry is one of the major challenges in the transportation sector, according to the recently proposed climate neutrality policies, e.g., the EU 'Fit for 55' package. Hydrogen as a carbon-free energy career is a promising alternative fuel to reduce greenhouse gas emissions. The main objective of the present study is to investigate non-reactive hydrogen jet impingement on a piston bowl profile at different injection angles and under the effect of various pressure ratios (PR), where PR is the relative ratio of injection pressure (IP) to chamber pressure (CP). This study helps to gain further insight into the mixture formation in a heavy-duty hydrogen engine, which is critical in predicting combustion efficiency. In the experimental campaign, a typical high-speed z-type Schlieren method is applied for visualizing the jet from the lateral windows of a constant volume chamber, and two custom codes are developed for post-processing the results.
Technical Paper

Experimental and Numerical Study of a Low-Pressure Hydrogen Jet under the Effect of Nozzle Geometry and Pressure Ratio

2023-04-11
2023-01-0320
Hydrogen (H2), a potential carbon-neutral fuel, has attracted considerable attention in the automotive industry for transition toward zero-emission. Since the H2 jet dynamics play a significant role in the fuel/air mixing process of direct injection spark ignition (DISI) engines, the current study focuses on experimental and numerical investigation of a low-pressure H2 jet to assess its mixing behavior. In the experimental campaign, high-speed z-type schlieren imaging is applied in a constant volume chamber and H2 jet characteristics (penetration and cross-sectional area) are calculated by MATLAB and Python-based image post-processing. In addition, the Unsteady Reynolds-Averaged Navier-Stokes (URANS) approach is used in the commercial software Star-CCM+ for numerical simulations.
Technical Paper

Large Eddy Simulation of the Intake Flow in a Realistic Single Cylinder Configuration

2012-04-16
2012-01-0137
The present paper focuses on gaining a deeper understanding about the turbulent flow inside an engine cylinder using large eddy simulation. While the main motivation of the current study is to gain a deeper understanding of the flow patterns and especially about the swirl, the background motivation of this study is the development and testing of suitable methods for the large eddy simulation of combustion engines and the validation of the used simulation methodology. In particular, we study the swirl and other flow features generated by the intake jets inside the cylinder. The simulated geometry is the Sisu Diesel 84 engine cylinder where the exhaust valves are closed and the intake valves have constant valve lifts. Furthermore, the piston has been removed so that the flow is able to exit from the opposite end of the cylinder.
Journal Article

Real Gas Effects in High-Pressure Engine Environment

2010-04-12
2010-01-0627
Real gas effects are studied during the compression stroke of a diesel engine. Several different real gas models are compared to the ideal gas law and to the experimental pressure history. Comparisons are done with both 1-D and CFD simulations, and reasons and answers are found out for the observed differences between simulations and experimental data. The engine compression ratio was measured for accurate model predictions. In addition, a 300bar extreme pressure case is also analyzed with the real gas model since an engine capable for this performance level is currently being built at the Aalto University School of Science and Technology. Real gas effects are even more important in these extreme conditions than in normal operating pressures. Finally, it is shown that the predicted pressure history during an engine compression stroke by a real gas model is more accurately predicted than by the ideal gas law.
X