Refine Your Search

Topic

Search Results

Technical Paper

3-dimensional Simulation of Knock in a Heavy-Duty LPG Engine

2002-10-21
2002-01-2700
Three-dimensional transient simulation was performed and an autoignition model was implemented to predict knock occurrence and autoignition site in a heavy-duty liquefied petroleum gas (LPG) engine. A flame area evolution (FAE) premixed combustion model was applied to simulate flame propagation. Engine experiments using a single-cylinder research engine were performed to calibrate the reduced kinetic model and to verify the result of this modeling. A pressure transducer and a head-gasket type ion-probe circuit board were installed to detect knock occurrence, flame arrival angle, and autoignition site. The simulation result shows good agreement with engine experiments. It also provides much information about in-cylinder phenomena and some ways to reduce knocking tendency. This knock simulation can be used as a development tool of engine design.
Technical Paper

A Quasi-Dimensional Model for Prediction of In-Cylinder Turbulence and Tumble Flow in a Spark-Ignited Engine

2018-04-03
2018-01-0852
Improving fuel efficiency and emission characteristics are significant issues in engine research. Because the engine has complex systems and various operating parameters, the experimental research is limited by cost and time. One-dimensional (1D) simulation has attracted the attention of researchers because of its effectiveness and relatively high accuracy. In a 1D simulation, the applied model must be accurate for the reliability of the simulation results. Because in-cylinder turbulence mainly determines the combustion characteristics, and mean flow velocity affects the in-cylinder heat transfer and efficiency in a spark-ignited (SI) engine, a number of sophisticated models have been developed to predict in-cylinder turbulence and mean flow velocity. In particular, tumble is a significant factor of in-cylinder turbulence in SI engine.
Technical Paper

A Study of Flow Characteristics on the Diesel-Gasoline Dual-Fuel Combustion by 3-D CFD

2019-09-09
2019-24-0117
Various advanced combustion concepts, which can achieve higher thermal efficiency and emissions reduction, have been suggested as the emissions regulation gets stricter. Dual-fuel combustion that operates by using different fuels having both premixed and non-premixed combustion characteristics is one of the viable alternatives. In dual-fuel combustion, it is critical to understand air-fuel mixture distribution as it determines the ignition spot and following combustion phase. The fuel distribution in the engine is affected by various factors, such as chamber geometry, injection strategy or in-cylinder flow motion. Furthermore, among them, in-cylinder motion, usually described in terms of swirl or tumble motion, is mostly affected by in-cylinder port geometry. In this paper, 3-dimensional Computational Fluid Dynamics (CFD) was used to investigate the effect of in-cylinder flow motion in dual-fuel combustion. Two head and port geometries were used in the simulations.
Technical Paper

A Study on the Refinement of Turbulence Intensity Prediction for the Estimation of In-Cylinder Pressure in a Spark-Ignited Engine

2017-03-28
2017-01-0525
The role of 1D simulation tool is growing as the engine system is becoming more complex with the adoption of a variety of new technologies. For the reliability of the 1D simulation results, it is necessary to improve the accuracy and applicability of the combustion model implemented in the 1D simulation tool. Since the combustion process in SI engine is mainly determined by the turbulence, many models have been concentrating on the prediction of the evolution of in-cylinder turbulence intensity. In this study, two turbulence models which can resemble the turbulence intensity close to that of 3D CFD tool were utilized. The first model is dedicated to predicting the evolution of turbulence intensity during intake and compression strokes so that the turbulence intensity at the spark timing can be estimated properly. The second model is responsible for predicting the turbulence intensity of burned and unburned zone during the combustion process.
Technical Paper

An Experimental Investigation of Injection and Operating Strategies on Diesel Single Cylinder Engine under JP-8 and Dual-Fuel PCCI Combustion

2015-04-14
2015-01-0844
The alternative fuel jet propellant 8 (JP-8, NATO F-34) can be used as an auto-ignition source instead of diesel. Because it has a higher volatility than diesel, it provides a better air-fuel premixing condition than a conventional diesel engine, which can be attributed to a reduction in particulate matter (PM). In homogeneous charged compression ignition (HCCI) or dual-fuel premixed charge compression ignition (PCCI) combustion or reactivity controlled compression ignition (RCCI), nitrogen oxides (NOx) can also be reduced by supplying external exhaust gas recirculation (EGR). In this research, the diesel and JP-8 injection strategies under conventional condition and dual-fuel PCCI combustion with and without external EGR was conducted. Two tests of dual-fuel (JP-8 and propane) PCCI were conducted at a low engine speed and load (1,500 rpm/IMEP 0.55 MPa). The first test was performed by advancing the main injection timing from BTDC 5 to 35 CA to obtain the emissions characteristics.
Technical Paper

An Experimental Study on the Knock Mitigation Effect of Coolant and Thermal Boundary Temperatures in Spark Ignited Engines

2018-04-03
2018-01-0213
Increasing compression ratio is essential for developing future high-efficiency engines due to the intrinsic characteristics of spark-ignited engines. However, it also causes the unfavorable, abnormal knocking phenomena which is the auto-ignition in the unburned end-gas region. To cope with regulations, many researchers have been experimenting with various methods to suppress knock occurrence. In this paper, it is shown that cooling the combustion chamber using coolants, which is one of the most practical methods, has a strong effect on knock mitigation. Furthermore, the relationship between thermal boundary and coolant temperatures is shown. In the beginning of this paper, knock metrics using an in-cylinder pressure sensor are explained for readers, even though entire research studies cannot be listed due to the innumerableness. The coolant passages for the cylinder head and the liner were separated to examine independent cooling strategies.
Technical Paper

Analysis of Cyclic Variation and the Effect of Fuel Stratification on Combustion Stabilityin a Port Fuel Injection (PFI) CAI Engine

2009-04-20
2009-01-0670
CAI engine is well known to be advantageous over conventional SI engines because it facilitates higher engine efficiency and lower emission (NOx and smoke). However, its limited operation range, large cyclic variation, and difficulty in heat release control are still unresolved obstacles. Previous studies showed that a high load range of the CAI engine is limited mainly by the combustion noise caused by a stiff pressure rise (knock), and that a low load range is also limited by the combustion instability caused by the high dilution of residual gas. In this study, the characteristics of each cycle were analyzed to find the cause of the cycle variation at the high load limit of CAI operation. Moreover, to improve combustion stability, we tested the in-cylinder fuel stratification by applying nonsymmetrical fuel injection to the intake port. Experiments were performed on a PFI single cylinder research engine equipped with dual CVVT and low lift (2 mm) cam shaft with NVO strategy.
Technical Paper

Computational and Optical Investigation of Liquid Fuel Film on the Cylinder Wall of an SI Engine

2003-03-03
2003-01-1113
The liquid fuel film on the cylinder liner is believed to be a major source of engine-out hydrocarbon emissions in SI engines, especially during cold start and warm-up period. Quantifying the liquid fuel film on the cylinder liner is essential to understand the engine-out hydrocarbon emissions formation in SI engines. In this work, the fuel film formation model was developed to investigate the distribution of wall fuel film on the cylinder wall of an SI engine. By integrating the continuity, momentum, and energy equations along the direction of fuel film thickness the simulation of the fuel film formation was carried out in the test rig. Spray impingement and fuel film models were incorporated into the computational fluid dynamics code, STAR-CD to calculate fuel film thickness and distribution of fuel film on the cylinder wall. With a laser-induced fluorescence method, the two-dimensional visualization of liquid fuel films was carried out to validate the simulation results.
Technical Paper

Development of Engine Control Using the In-Cylinder Pressure Signal in a High Speed Direct Injection Diesel Engine

2011-04-12
2011-01-1418
Emissions regulations are becoming more severe, and they remain a principal issue for vehicle manufacturers. Many engine subsystems and control technologies have been introduced to meet the demands of these regulations. For diesel engines, combustion control is one of the most effective approaches to reducing not only engine exhaust emissions but also cylinder-by-cylinder variation. However, the high cost of the pressure sensor and the complex engine head design for the extra equipment are stressful for the manufacturers. In this paper, a cylinder-pressure-based engine control logic is introduced for a multi-cylinder high speed direct injection (HSDI) diesel engine. The time for 50% of the mass fraction to burn (MFB50) and the IMEP are valuable for identifying combustion status. These two in-cylinder quantities are measured and applied to the engine control logic.
Technical Paper

Development of a Vehicle System Model for the First Medium- and Heavy-Duty Commercial Vehicle Fuel Efficiency Standards in Korea

2015-09-29
2015-01-2774
To properly respond to demands to reduce national energy consumption and meet greenhouse gas emission targets based on environment policy, the Ministry of Trade, Industry, and Energy of Korea formed a research consortium consisting of government agencies and academic and research institutions to establish the first fuel efficiency standards for medium- and heavy-duty (MHD) commercial vehicles. The standards are expected to be introduced in 2017 as Phase 1 of the plan and will regulate trucks with a gross vehicle weight in excess of 3.5 tons and buses with a carrying capacity of more than 16 persons. Most MHD commercial vehicles are custom-made and manufactured in diversified small-quantity batch production systems for commercial or public use, resulting in difficulties in utilizing mandatory vehicle tests for fuel efficiency evaluations.
Technical Paper

Emission Reduction using a Close Post Injection Strategy with a Modified Nozzle and Piston Bowl Geometry for a Heavy EGR Rate

2012-04-16
2012-01-0681
As EURO-6 regulations will be enforced in 2014, the reduction of NOx emission while maintaining low PM emission levels becomes an important topic in current diesel engine research. EGR is the most effective way to reduce the NOx emission because EGR has a dilution and thermal effect as a means to reduce the oxygen concentration and combustion temperature. Although EGR is useful in reducing the NOx emission, it suffers from a higher level of CO and THC emissions, which indicates a low combustion efficiency and poor fuel consumption. Therefore, in this research, a close post injection strategy, which is implemented using main injection and post injection, is introduced to improve combustion efficiency and to reduce PM emission under a high EGR rate. In addition, a modified hardware configuration using a double-row nozzle and a two-staged piston bowl geometry is adapted to improve the effect of the close post injection.
Technical Paper

Enhancing Performance and Combustion of an LPG MPI Engine for Heavy Duty Vehicles

2002-03-04
2002-01-0449
An LPG engine for heavy duty vehicles has been developed using liquid phase LPG injection (hereafter LPLI) system, which has regarded as as one of next generation LPG fuel supply systems. In this work the optimized piston cavities were investigated and chosen for an LPLI engine system. While the mass production of piston cavities is considered, three piston cavities were tested: Dog-dish type, bathtub type and top-land-cut bathtub type. From the experiments the bathtub type showed the extension of lean limit while achieving the stable combustion, compared to the dog-dish type at the same injection timing. Throughout CFD analysis, it was revealed that the extension of lean limit was due to an increase of turbulence intensity by the enlarged crevice area, and the enlargement of flame front surface owing to the shape of the bathtub piston cavity compared to that of the dog-dish type.
Journal Article

Fuel Economy Research on Series-Type HEV Intracity Buses with Different Traction Motor Capacity Combinations

2012-04-16
2012-01-1035
Research on HEV (hybrid electric vehicle) intracity buses has become a topic of interest because the well-known service routes of intracity buses and the frequent stop/go pattern make the energy management of the vehicle straightforward. Thus, the energy flow and the energy management of the intracity bus have been studied extensively in order to improve fuel economy. However, the HEV buses that have been studied previously were equipped with a single traction motor or with dual motors with the same capacity for the convenience of the equipment without considering the motoring or generating efficiency of the traction motor. Therefore, the energy flow from the engine/generator unit to the traction motor that has been optimized by many kinds of energy distribution strategies could not be transferred to the wheels in the most efficient manner. This paper investigates this aspect of the energy flow.
Technical Paper

Hydraulic Simulation and Experimental Analysis of Needle Response and Controlled Injection Rate Shape Characteristics in a Piezo-driven Diesel Injector

2006-04-03
2006-01-1119
The More precise control of the multiple-injection is required in common-rail injection system of direct injection diesel engine to meet the low NOx emission and optimal PM filter system. The main parameter for obtaining the multiple-injections is the mechanism controlling the injector needle energizing and movement. In this study, a piezo-driven diesel injector, as a new method driven by piezoelectric energy, has been applied with a purpose to develop the analysis model of the piezo actuator to predict the dynamics characteristics of the hydraulic component (injector) by using the AMESim code and to evaluate the effect of this control capability on spray formation processes. Aimed at simulating the hydraulic behavior of the piezo-driven injector, the circuit model has been developed and verified by comparison with the experimental results.
Technical Paper

Impact of Grid Density on the LES Analysis of Flow CCV: Application to the TCC-III Engine under Motored Conditions

2018-04-03
2018-01-0203
Large-eddy simulation (LES) applications for internal combustion engine (ICE) flows are constantly growing due to the increase of computing resources and the availability of suitable CFD codes, methods and practices. The LES superior capability for modeling spatial and temporal evolution of turbulent flow structures with reference to RANS makes it a promising tool for describing, and possibly motivating, ICE cycle-to-cycle variability (CCV) and cycle-resolved events such as knock and misfire. Despite the growing interest towards LES in the academic community, applications to ICE flows are still limited. One of the reasons for such discrepancy is the uncertainty in the estimation of the LES computational cost. This in turn is mainly dependent on grid density, the CFD domain extent, the time step size and the overall number of cycles to be run. Grid density is directly linked to the possibility of reducing modeling assumptions for sub-grid scales.
Technical Paper

Improvement of Knock Onset Determination Based on Supervised Deep Learning Using Data Filtering

2021-04-06
2021-01-0383
Regulations regarding vehicles’ CO2 emissions are continuing to become stricter due to global warming. The CO2 regulations urge automobile manufacturers to develop gasoline engines with improved efficiency; however, the main obstacle to the improvement is the knock phenomenon in spark-ignition engines. If knock is predicted, the efficiency potential can be maximized in an engine by applying modest spark timing. Several research regarding knock prediction modeling have been conducted, and typically Livengood-Wu integral model is used to predict the knock occurrence. For the prediction, knock onset should be determined on a given pressure signal of given knock cycles for establishing the 0D ignition delay model. Several methodologies for knock onset determination have been developed because checking all the knock onset position by hand is impossible considering the breadth of data sets.
Technical Paper

Investigation of Sub-Grid Model Effect on the Accuracy of In-Cylinder LES of the TCC Engine under Motored Conditions

2017-09-04
2017-24-0040
The increasing interest in the application of Large Eddy Simulation (LES) to Internal Combustion Engines (hereafter ICEs) flows is motivated by its capability to capture spatial and temporal evolution of turbulent flow structures. Furthermore, LES is universally recognized as capable of simulating highly unsteady and random phenomena driving cycle-to-cycle variability (CCV) and cycle-resolved events such as knock and misfire. Several quality criteria were proposed in the recent past to estimate LES uncertainty: however, definitive conclusions on LES quality criteria for ICEs are still far to be found. This paper describes the application of LES quality criteria to the TCC-III single-cylinder optical engine from University of Michigan and GM Global R&D; the analyses are carried out under motored condition.
Technical Paper

Laminar Flame Speed Characteristics and Combustion Simulation of Synthetic Gas Fueled SI Engine

2008-04-14
2008-01-0965
As the real-time supplying of hydrogen-rich gas becomes possible by the advances in the on-board fuel reforming technologies, utilizations of synthetic gas in IC engines are actively studied. However, due to the lack of fundamental studies on the combustion characteristics of synthetic gas, there is no precedent for the simulation of combustion process in synthetic gas fueled SI engine. In this study, the laminar flame speeds of synthetic gas and its mixture with iso-octane were calculated under extensive initial conditions of 3,575 points derived by combinations of temperature, pressure, fraction of lower heating value of synthetic gas and air-excess ratio variations.
Technical Paper

Measurements and Modeling of Residual Gas Fraction in SI Engines

2001-05-07
2001-01-1910
The residual gas in SI engines is one of important factors on emission and performance such as combustion stability. With high residual gas fractions, flame speed and maximum combustion temperature are decreased and there are deeply related with combustion stability, especially at Idle and NOx emission at relatively high engine load. Therefore, there is a need to characterize the residual gas fraction as a function of the engine operating parameters. A model for predicting the residual gas fraction has been formulated in this paper. The model accounts for the contribution due to the back flow of exhaust gas to the cylinder during valve overlap and it includes in-cylinder pressure prediction model during valve overlap. The model is derived from the one dimension flow process during overlap period and a simple ideal cycle model.
Technical Paper

Modeling of Combustion Process of Multiple Injection in HSDI Diesel Engines using Modified Two-Dimensional Flamelet

2007-09-16
2007-24-0042
Ignition delay of the second injection of HSDI diesel engines is generally much shorter than that of the first injection because of the interaction between the radicals generated during the combustion process and the mixed gas of the second injection. Although previous Diesel combustion models could not explain this reaction, Hasse and Peters described the mass and heat transfer of the second injection and estimated the ignition delay of the second injection using two-dimensional flamelet equations. But a simulation of the two-dimensional flamelet equations requires enormous computational time. Thus, to analyze the combustion phenomena of the multiple injection mode in HSDI diesel engines effectively, the two-dimensional flamelet combustion model was modified in this study. To reduce the calculation time, two-dimensional flamelet equations were only applied near the stoichiometric region.
X