Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 15489
Technical Paper

"Quattro"-Drive for Every Day Driving

1984-01-01
845070
An essential feature of the Audi Quattro permanent four-wheel drive system is in the inter-axle differential located on the hollow output shaft in the gearbox: the drive is taken from this differential forward to the front differential through the inside of the hollow shaft, and rearward to a propellor shaft driving the rear differential. The major advantages in everyday driving include improved traction and a reduced tendency toward throttle induced changes of attitude. The greater traction allows not only better progress in difficult road conditions; it also gives better acceleration in difficult traffic situations, such as when joining a busy main road. The more easily predictable handling response to throttle changes means that Quattro vehicles have better tracking stability. Altogether, the active safety and "roadability" are considerably improved.
Technical Paper

1-D Model of Roots Type Supercharger

2013-04-08
2013-01-0927
This paper introduces research work on 1-D model of Roots type supercharger with helical gears using 1-D simulation tool. Today, passenger car engine design follows approach of downsizing and the reduction of number of engine cylinders. Superchargers alone or their combination with turbochargers can fulfill low-end demands on engine torque for such engines. Moreover, low temperature combustion of lean mixture at low engine loads becomes popular (HCCI, PCCI) requiring high boost pressure of EGR/fresh air mixture at low exhaust gas temperature, which poses too high demands on turbocharger efficiency. The main objective of this paper is to describe Roots charger features and to amend Roots charger design.
Technical Paper

1-D Modeling of Transient Engine Operations Using Data Generated by a CFD Code

2008-04-14
2008-01-0357
Transient engine operations are modeled and simulated with a 1-D code (GT Power) using heat release and emission data computed by a 3-D CFD code (Kiva3). During each iteration step of a transient engine simulation, the 1-D code utilizes the 3-D data to interpolate the values for heat release and emissions. The 3-D CFD computations were performed for the compression and combustion stroke of strategically chosen engine operating points considering engine speed, torque and excess air. The 3-D inlet conditions were obtained from the 1-D code, which utilized 3-D heat release data from the previous 1-D unsteady computations. In most cases, only two different sets of 3-D input data are needed to interpolate the transient phase between two engine operating points. This keeps the computation time at a reasonable level. The results are demonstrated on the load response of a generator which is driven by a medium-speed diesel engine.
Technical Paper

10 KWe Dual-Mode Space Nuclear Power System for Military and Scientific Applications

1992-08-03
929072
A 10 KWe dual-mode space power system concept has been identified which is based on INEL's Small Externally-fueled Heat Pipe Thermionic Reactor (SEHPTR) concept. This power system will enhance user capabilities by providing reliable electric power and by providing two propulsion systems; electric power for an arc-jet electric propulsion system and direct thrust by heating hydrogen propellant inside the reactor. The low thrust electric thrusters allow efficient station keeping and long-term maneuvering. The direct thrust capability can provide tens of pounds of thrust at a specific impulse of around 730 seconds for maneuvers that must be performed more rapidly. The direct thrust allows the nuclear power system to move a payload from Low Earth Orbit (LEO) to Geosynchronous Earth Orbit (GEO) in less than one month using approximately half the propellant of a cryogenic chemical stage.
Technical Paper

100,000 HP Gas Turbine Load Test Facility

1976-02-01
760314
The problem of testing large gas turbines at full load in the factory has been solved with the construction of a load test facility utilizing a gas turbine compressor as the load absorption device. Design philosophy and features are reviewed, and a summary, of operating experience to date is presented.
Technical Paper

100,000-Mile Evaluation of Transit Buses Operated on Biodiesel Blends (B20)

2006-10-16
2006-01-3253
Nine identical 40-ft. transit buses were operated on B20 and diesel for a period of two years - five of the buses operated exclusively on B20 (20% biodiesel blend) and the other four on petroleum diesel. The buses were model year 2000 Orion V equipped with Cummins ISM engines, and all operated on the same bus route. Each bus accumulated about 100,000 miles over the course of the study. B20 buses were compared to the petroleum diesel buses in terms of fuel economy, vehicle maintenance cost, road calls, and emissions. There was no difference between the on-road average fuel economy of the two groups (4.41 mpg) based on the in-use data, however laboratory testing revealed a nearly 2% reduction in fuel economy for the B20 vehicles. Engine and fuel system related maintenance costs were nearly identical for the two groups until the final month of the study.
Technical Paper

11 Rules of Design for Manufacturing when Producing Pre-Impregnated Carbon Fiber-Reinforced Plastic Components - an Application at SAAB Aerostructures

2016-09-27
2016-01-2124
Carbon fiber-reinforced plastic (CFRP) is one of the most commonly used materials in the aerospace industry today. CFRP in pre-impregnated form is an anisotropic material whose properties can be controlled to a high level by the designer. Sometimes, these properties make the material hard to predict with regards to how the geometry affects manufacturing aspects. This paper describes eleven design rules originating from different guidelines that describe geometrical design choices and deals with manufacturability problems that are connected to them, why they are connected and how they can be minimized or avoided. Examples of design choices dealt with in the rules include double curvature shapes, assembly of uncured CFRP components and access for non-destructive testing (NDT). To verify the technical content and ensure practicability, the rules were developed by, inter alia, studying literature and performing case studies at SAAB Aerostructures.
Technical Paper

14 Degree-of-Freedom Vehicle Model for Roll Dynamics Study

2006-04-03
2006-01-1277
A vehicle model is an important factor in the development of vehicle control systems. Various vehicle models having different complexities, assumptions, and limitations have been developed and applied to many different vehicle control systems. A 14 DOF vehicle model that includes a roll center as well as non-linear effects due to vehicle roll and pitch angles and unsprung mass inertias, is developed. From this model, the limitations and validity of lower order models which employ different assumptions for simplification of dynamic equations are investigated by analyzing their effect on vehicle roll response through simulation. The possible limitation of the 14 DOF model compared to an actual vehicle is also discussed.
Technical Paper

1940 ROAD DETONATION TESTS - (Compiled from Report1 of The Cooperative Fuel Research Committee)

1941-01-01
410107
THE 1940 CFR Road Tests have developed new information that can be used for the development of fuels and engines. Application of the principles worked out in these tests is expected to result in a more efficient utilization of fuel antiknock properties and more effective engine design and adjustment to meet the requisites of current motor fuels. These tests indicate that the ASTM octane number alone, or even a road octane number as determined by methods heretofore widely used, does not give sufficient information for present needs relative to fuel behavior in service. Neither do test methods previously used provide sufficient information concerning the fuel requirements and knocking characteristics of engines. The new methods of approach which have been developed furnish needed information relative to the fuel and engine relationship that heretofore has been obscure, and indicate paths for future developments.
Technical Paper

1941 CFR ROAD DETONATION TESTS - Further Experience with New Methods (Compiled from Report of the Cooperative Fuel Research Committee)

1942-01-01
420122
The cooperative road tests carried out during 1941 have added considerable information and experience to that already existing on the subject of road detonation testing. Extensive data were obtained on the fuel requirements of the 1940 and 1941 models of the three most popular cars. Corresponding data were obtained on the knocking characteristics of current gasolines representing the bulk of the sales volume in various parts of the United States. On account of large variations in octane-number requirement among different cars of the same make - due to differences in ignition timing, combustion-chamber deposit, and other causes - and on account of variations in commercial gasolines, it has been necessary to use statistical methods of analysis in the appraisal of fuel and engine relationships. These methods of analysis have been applied in a number of ways, and have proved very useful.
Technical Paper

1964 Pure Oil Performance Trials

1964-01-01
640476
A review of the Pure Oil Performance Trials conducted at Daytona International Speedway are presented. Background information pertaining to conducting of tests, design of the equipment, and instrumentation required for the various events are discussed. The performance trials have evolved into three basic tests -- Economy, Acceleration, and Braking. The objective of the Performance Trials is to provide data that motorists can utilize in evaluating new cars and selecting new models.
Technical Paper

1967 Guide to Governmental Assurance Documentation: In the Areas of Quality, Reliability, Maintainability, Value Engineering, Safety, Human Factors, and Zero Defects

1967-02-01
670642
Governmental assurance documentation bibliography updated; new tabulation effective as of April 1, 1967. Latest revision indicated in all instances, but no attempt was made to list supplements or amendments. Department of Defense Index of Specifications and Standards (DODISS) published annually in three parts (alphabetic, numerical, and listing of Federal Supply Classification following unclassified documents.
Technical Paper

1980 Prince Edward Island Auto Fuel Economy and Emissions Test Program

1982-02-01
821230
A program of emission testing and carburetor adjustment to reduce the levels of hydrocarbons and carbon monoxide in the exhaust gases and to demonstrate fuel economy improvements was held in Charlottetown during the week of July 14 to 19, 1980. The program was a co-operative effort of the Centre of Energy Studies of the Technical University of Nova Scotia, the Mobile Sources Division of the Air Pollution Control Directorate, Environment Canada and the Prince Edward Island Energy Corporation. Five hundred and twenty vehicles were tested during the period. The program was well received by the public and indicated that only 32% of the vehicle fleet were within specification when initially tested. A large percentage of these vehicles were satisfactorily adjusted. Mailback record cards were used to obtain an indication of the improved fuel economy. The data suggests that a substantial saving in fuel can be attained through carburetor tuning for low exhaust emissions.
Technical Paper

1998/1999 AIAA Foundation Graduate Team Aircraft Design Competition: Super STOL Carrier On-board Delivery Aircraft

2000-10-10
2000-01-5535
The Cardinal is a Super Short Takeoff and Landing (SSTOL) aircraft, which is designed to fulfill the desire for center-city to center-city travel by utilizing river “barges” for short takeoffs and landings to avoid construction of new runways or heliports. In addition, the Cardinal will fulfill the needs of the U.S. Navy for a Carrier On-board Delivery (COD) aircraft to replace the C-2 Greyhound. Design requirements for the Cardinal included a takeoff ground roll of 300 ft, a landing ground roll of 400 ft, cruise at 350 knots with a range of up to 1500 nm with reserves, payload of 24 passengers and baggage for a commercial version or a military version with a 10,000 lb payload, capable of carrying two GE F110 engines for the F-14D, and a spot factor requirement of 60 feet by 29 feet.
Journal Article

1D Mathematical Model Development for Prediction and Mitigation of Vehicle Pull Considering Suspension Asymmetry and Tire Parameters

2021-09-22
2021-26-0502
Error in suspension asymmetry or tire parameters may lead to vehicle drifting laterally from its intended straight-line path, which is called vehicle pull. Driver then needs to apply constant steering correction to maintain the vehicle in straight line which will lead to high driver fatigue and deteriorate driving experience. Manufacturing a perfectly symmetric suspension system is impractical, however an insight into the manufacturing tolerances of suspension system at the early design stage can be extremely useful. Also tire force and moment parameters at straight line operation and its maximum allowable variations will help in defining the tire parameter specifications and tolerances. The objective of this study was to develop a 1D model of suspension and tire system which can predict the torque experienced in steering and drift of the vehicle from straight line due to the tire force and moment and asymmetric suspension geometry.
Journal Article

1D Simulation and Experimental Analysis of a Turbocharger Compressor for Automotive Engines under Unsteady Flow Conditions

2011-04-12
2011-01-1147
Turbocharging technique will play a fundamental role in the near future not only to improve automotive engine performance, but also to reduce fuel consumption and exhaust emissions both in Spark Ignition and diesel automotive applications. To achieve excellent engine performance for road application, it is necessary to overcome some typical turbocharging drawbacks i.e., low end torque level and transient response. Experimental studies, developed on dedicated test facilities, can supply a lot of information to optimize the engine-turbocharger matching, especially if tests can be extended to the typical engine operating conditions (unsteady flow). Different numerical procedures have been developed at the University of Naples to predict automotive turbocharger compressor performance both under steady and unsteady flow conditions. A classical 1D approach, based on the employment of compressor characteristic maps, was firstly followed.
Technical Paper

1D Tire Model Parameter Synthesis for Vehicle Handling Targets Assessment “A Strategy of Optimization and Evaluation of Tire Math’s”

2019-01-09
2019-26-0361
Handling performance of a vehicle is a key characteristic determining the response of vehicle under different operating scenarios. An insight into these vehicle-handling characteristics at early stage can be extremely useful in the design and development process. Tire characterization and tuning is important and mandatory to scrutinize each functional and individual parameter of tire. Tire force and moment data is having a significant effect in vehicle handling. Segregation of tire parameter, which is contributing vehicle-handling performance, helps to identify and perform optimization for improvisation. The main objective of this study is development and integration optimized 1D tire model into multibody dynamics model of the vehicle to observe various vehicle compliances towards its handling performance target.
Technical Paper

1st Order Boom Noise Relationship to Driveline Imbalance

2005-05-16
2005-01-2299
Two vehicle level test methods were developed that illustrate the relationship between 1st order noise in a cabin, and driveline imbalance contributors. At the launch of a new 2005 4WD sport utility vehicle program, a significant boom noise complaint was observed on many vehicles between 55-70 mph. The full time, electronic actively controlled, torque biasing transfercase was intensely reviewed as a potential source of excessive torque induced imbalance. Testing of the transfercase was performed on imbalance measurement stands, dynamometers, and in the vehicle. The result was the identification of two issues. First was that two internal to the transfercase parts were found to have excessive runout. Second was that there was a lack of vehicle correlation to transfercase imbalance. An extensive effort involving over 50 vehicles of the same model was pursued to find the source of the problem.
Technical Paper

2-Ply Windshields: Laboratory Impactor Tests of the Polyurethane Construction

1995-02-01
950048
A test program was conducted to characterize the impact response of an experimental 2-ply windshield construction with a polyurethane (PUR) plastic inner layer. Windshield impact tests were conducted using a linear impactor test facility. Principle among the findings was that the impact response of prototype PUR 2-ply windshields does not differ that significantly from that of baseline 3-ply HPR (High Penetration Resistance) windshields for the subcompact vehicle geometry tested. However, the impact responses of both PUR 2-ply and 3-ply HPR subcompact vehicle windshields were found to be highly variable. Average performance of either construction could thus be enhanced if ways could be found (and then implemented) to reduce this variability.
Technical Paper

2-Ply Windshields: Laboratory Impactor Tests of the Polyvinyl Butyral/Polyester Construction

1995-02-01
950047
A test program was conducted to characterize the impact response of an experimental 2-ply windshield construction with a polyvinyl butyral / polyester (PVB/PET) inner plastic laminate. Windshield impact tests were conducted using a linear impactor test facility. Principal among the findings was that the measured impact response of prototype PVB/PET 2-ply windshields was highly variable. Average performance of this construction could thus be improved if ways could be found (and then implemented) to reduce this variability.
X