Refine Your Search

Search Results

Viewing 1 to 20 of 20
Technical Paper

26 X 6.6 Radial-Belted Aircraft Tire Performance

1991-09-01
912157
Preliminary results from testing of 26 X 6.6 radial-belted and bias-ply aircraft tires at NASA Langley's Aircraft Landing Dynamics Facility (ALDF) are reviewed. These tire tests are part of a larger, on going joint NASA/FAA/Industry Surface Traction and Radial Tire (START) Program involving three different tire sizes. The 26 X 6.6 tire size evaluation includes cornering performance tests throughout the aircraft ground operational speed range for both dry and wet runway surfaces. Static test results to define 26 X 6.6 tire vertical stiffness properties are also presented and discussed.
Technical Paper

A Summary of Recent Aircraft/Ground Vehicle Friction Measurement Tests

1988-10-01
881403
Tests with specially instrumented NASA B-737 and B-727 aircraft together with several different ground friction measuring devices have been conducted for a variety of runway surface types and wetness conditions. This effort is part of the Joint FAA/NASA Aircraft/Ground Vehicle Runway Friction Program aimed at obtaining a better understanding of aircraft ground handling performance under adverse weather conditions and defining relationships between aircraft and ground vehicle tire friction measurements. Aircraft braking performance on dry, wet, snow-, and ice-covered runway conditions is discussed together with ground vehicle friction data obtained under similar runway conditions. For a given contaminated runway surface condition, the relationship between ground vehicles and aircraft friction data is identified. The influence of major test parameters on friction measurements such as speed, test tire characteristics, and surface contaminant type are discussed.
Technical Paper

Aircraft Landing Dynamics Facility, A Unique Facility with New Capabilities

1985-10-01
851938
The Aircraft Landing Dynamics Facility (ALDF), formerly called the Landing Loads Track, is described. The paper gives a historical overview of the original NASA Langley Research Center Landing Loads Track and discusses the unique features of this national test facility. Comparisions are made between the original track characteristics and the new capabilities of the Aircraft Landing Dynamics Facility following the recently completed facility update. Details of the new propulsion and arresting gear systems are presented along with the novel features of the new high-speed carriage. The data acquisition system is described and the paper concludes with a review of future test programs.
Technical Paper

Aircraft Nose Gear Shimmy Studies

1993-04-01
931401
An overview of previous studies involving aircraft nose gear shimmy behavior is given together with some test results identifying the influence of different factors inducing shimmy. A NASA Langley test program conducted at the Landing Loads Track (LLT) facility to evaluate shimmy characteristics of an actual Space Shuttle nose gear is described together with some of the test results. Based on results from these various evaluations, recommendations are made concerning nose gear design features, such as corotating wheels, to minimize the occurrence of shimmy.
Technical Paper

Aircraft Radial-Belted Tire Evaluation

1990-09-01
901913
An overview is given of the ongoing joint NASA/FAA/Industry Surface Traction And Radial Tire (START) Program being conducted at NASA Langley's Aircraft Landing Dynamics Facility (ALDF). The START Program involves tests using three different tire sizes to evaluate tire rolling resistance, braking, and cornering performance throughout the aircraft ground operational speed range for both dry and wet runway surfaces. Preliminary results from recent 40 x 14 size bias-ply, radial-belted, and H-type aircraft tire tests are discussed. The paper concludes with a summary of the current program status and planned ALDF test schedule.
Technical Paper

Aircraft and Ground Vehicle Friction Measurements Obtained Under Winter Runway Conditions

1989-04-01
891070
Tests with specially instrumented NASA B-737 and B-727 aircraft together with several different ground friction measuring devices have been conducted for a variety of runway surface types and wetness conditions. This effort is part of the Joint FAA/NASA Aircraft/Ground Vehicle Runway Friction Program aimed at obtaining a better understanding of aircraft ground handling performance under adverse weather conditions and defining relationships between aircraft and ground vehicle tire friction measurements. Aircraft braking performance on dry, wet, snow-, and ice-covered runway conditions is discussed together with ground vehicle friction data obtained under similar runway conditions. For the wet, compacted snow- and ice-covered runway conditions, the relationship between ground vehicles and aircraft friction data is identified. The influence of major test parameters on friction measurements such as speed, test tire characteristics, and surface contaminant type are discussed.
Technical Paper

Cornering and Wear Behavior of the Space Shuttle Orbiter Main Gear Tire

1987-10-01
871867
One of the factors needed to describe the handling characteristics of the Space Shuttle Orbiter during the landing rollout is the response of the vehicle's tires to variations in load and yaw angle. An experimental investigation of the cornering characteristics of the Orbiter main gear tires was conducted at the NASA Langley Research Center Aircraft Landing Dynamics Facility. This investigation compliments earlier work done to define the Orbiter nose tire cornering characteristics. In the investigation, the effects of load and yaw angle were evaluated by measuring parameters such as side load and drag load, and obtaining measurements of aligning torque. Because the tire must operate on an extremely rough runway at the Shuttle Landing Facility at Kennedy Space Center (KSC), tests were also conducted to describe the wear behavior of the tire under various conditions on a simulated KSC runway surface. Mathematical models for both the cornering and the wear behavior are discussed.
Technical Paper

Cornering and Wear Characteristics of the Space Shuttle Orbiter Nose-Gear Tire

1989-09-01
892347
Tests of the Space Shuttle Orbiter nose-gear tire have been completed at NASA Langley's Aircraft Landing Dynamics Facility. The purpose of these tests was to determine the cornering and wear characteristics of the Space Shuttle Orbiter nose-gear tire under realistic operating conditions. The tire was tested on a simulated Kennedy Space Center runway surface at speeds from 100 to 180 kts. The results of these tests defined the cornering characteristics which included side forces and associated side force friction coefficient over a range of yaw angles from 0° to 12°. Wear characteristics were defined by tire tread and cord wear over a yaw angle range of 0° to 4° under dry and wet runway conditions. Wear characteristics were also defined for a 15 kt crosswind landing with two blown right main-gear tires and nose-gear steering engaged.
Technical Paper

Current Status of Joint FAA/NASA Runway Friction Program

1989-09-01
892340
Tests with specially instrumented NASA B-737 and FAA B-727 aircraft together with several different ground friction measuring devices have been conducted for a variety of runway surface types and wetness conditions. This effort is part of the Joint FAA/NASA Aircraft/Ground Vehicle Runway Friction Program aimed at obtaining a better understanding of aircraft ground handling performance under adverse weather conditions and defining relationships between aircraft and ground vehicle tire friction measurements. Aircraft braking performance on dry, wet, snow-, and ice-covered runway conditions is discussed together with ground vehicle friction data obtained under similar runway conditions. For the wet, compacted snow-and ice-covered runway conditions, the relationship between ground vehicles and aircraft friction data is identified. The influence of major test parameters on friction measurements such as speed, test tire characteristics, and surface contaminant type are discussed.
Technical Paper

Flow Rate and Trajectory of Water Spray Produced by an Aircraft Tire

1986-10-01
861626
One of the risks associated with wet runway aircraft operation is the ingestion of water spray produced by an aircraft's tires into its engines. This problem can be especially dangerous at or near rotation speed on the takeoff roll. An experimental investigation was conducted in the NASA Langley Research Center Hydrodynamics Research Facility to measure the flow rate and trajectory of water spray produced by an aircraft nose tire operating on a flooded runway. The effects of various parameters on the spray patterns including distance aft of nosewheel, speed, load, and water depth were evaluated. Variations in the spray pattern caused by the airflow about primary structure such as the fuselage and wing are discussed. A discussion of events in and near the tire footprint concerning spray generation is included.
Technical Paper

Friction Evaluation of Concrete Paver Blocks for Airport Pavement Applications

1992-10-01
922013
The development and use of concrete paver blocks is reviewed and some general specifications for application of this type of pavement surface at airport facilities are given. Two different shapes of interlocking concrete paver blocks installed in the track surface at NASA Langley's Aircraft Landing Dynamics Facility (ALDF) are described. Preliminary cornering performance results from testing of 40 x 14 radial-belted and bias-ply aircraft tires are reviewed. These tire tests are part of a larger, ongoing joint NASA/FAA/Industry Surface Traction and Radial Tire (START) Program involving several different tire sizes. Both dry and wet surface conditions were evaluated on the two concrete paver block test surfaces and a conventional, nongrooved Portland cement concrete surface. Future test plans involving evaluation of other concrete paver block designs at the ALDF are indicated.
Technical Paper

Orbiter Post-Tire Failure and Skid Testing Results

1989-09-01
892338
An investigation was conducted at the NASA Langley Research Center's Aircraft Landing Dynamics Facility (ALDF) to define the post-tire failure drag characteristics of the Space Shuttle Orbiter main tire and wheel assembly. Skid tests on various materials were also conducted to define their friction and wear rate characteristics under higher speed and bearing pressures than any previous tests. The skid tests were conducted to support a feasibility study of adding a skid to the orbiter strut between the main tires to protect an intact tire from failure due to overload should one of the tires fail. Roll-on-rim tests were conducted to define the ability of a standard and a modified orbiter main wheel to roll without a tire. Results of the investigation are combined into a generic model of strut drag versus time under failure conditions for inclusion into rollout simulators used to train the shuttle astronauts.
Technical Paper

Runway Drainage Characteristics Related to Tire Friction Performance

1991-09-01
912156
The capability of a runway pavement to rapidly drain water buildup during periods of precipitation is crucial to minimize tire hydroplaning potential and maintain adequate aircraft ground operational safety. Test results from instrumented aircraft, ground friction measuring vehicles, and NASA Langley's Aircraft Landing Dynamics Facility (ALDF) track have been summarized to indicate the adverse effects of pavement wetness conditions on tire friction performance. Water drainage measurements under a range of rainfall rates have been evaluated for several different runway surface treatments including the transversely grooved and longitudinally grinded concrete surfaces at the Space Shuttle Landing Facility (SLF) runway at NASA Kennedy Space Center in Florida. The major parameters influencing drainage rates and extent of flooding/drying conditions are identified.
Technical Paper

Shuttle Landing Runway Modification to Improve Tire Spin-Up Wear Performance

1988-10-01
881402
Landings of the Space Shuttle Orbiter at 200 knot speeds on the rough, grooved Kennedy Space Center runway have encountered greater than anticipated tire wear, which resulted in limiting landings on that runway to crosswinds of 10 knots or less. The excessive wear stems from wear caused during the initial tire touchdown spin-up. Tire spin-up wear tests have been conducted on a simulated KSC runway surface modified by several different techniques in an effort to reduce spin-up wear while retaining adequate wet cornering coefficients for directional control. The runway surface produced by a concrete smoothing machine using cutters spaced 1 3/4 blades per centimeter was found to give adequate wet cornering while limiting spin-up wear to that experienced in spinups on smooth concrete.
Technical Paper

Shuttle Orbiter Arrestment System Studies

1988-10-01
881361
Scale model studies of the Shuttle Orbiter Arrestment System have been completed. The system was tested with a 1/27.5 scale model at the NASA Langley Research Center and a 1/8 scale model at All American Engineering Company. The purpose of these studies was to determine the proper net arrestment system configuration to bring the Orbiter to a safe stop in the event of a runway overrun with minimal damage. Tests were conducted for centerline engagements and off-center engagements at simulated speeds up to 95 knots full scale. The results of these studies defined the net-orbiter interaction, corrections to prevent underwing engagements, corrections necessary to prevent net entanglement in the main gear, the dynamics of off-centerline engagements, and the maximum number of vertical straps that might become entangled with the nose gear.
Technical Paper

Spin-Up Studies of the Space Shuttle Orbiter Main Gear Tire

1988-10-01
881360
One of the factors needed to describe the wear behavior of the Space Shuttle Orbiter main gear tires is their behavior during the spin-up process. An experimental investigation of tire spin-up processes was conducted at the NASA Langley Research Center's Aircraft Landing Dynamics Facility (ALDF). During the investigation, the influence of various parameters such as forward speed and sink speed on tire spin-up forces were evaluated. A mathematical model was developed to estimate drag forces and spin-up times and is presented. The effect of prerotation was explored and is discussed. Also included is a means of determining the sink speed of the orbiter at touchdown based upon the appearance of the rubber deposits left on the runway during spinup.
Technical Paper

The Effect of Runway Surface and Braking on Shuttle Orbiter Main Gear Tire Wear

1992-10-01
922038
In 1988, a 1067 m long touchdown zone on each end of the Kennedy Space Center (KSC) Shuttle Landing Facility (SLF) was modified from its original heavy-broom finish with transverse grooves configuration to a longitudinal corduroy surface texture with no transverse grooves. The intent of this modification was to reduce the spin-up wear on the Orbiter main gear tires and provide for somewhat higher crosswind capabilities at that site. The modification worked well, so it was proposed that the remainder of the runway be modified as well to permit even higher crosswind landing capability. Tests were conducted at the NASA Langley Aircraft Landing Dynamics Facility (ALDF) to evaluate the merit of such a modification. This paper discusses the results of these tests, and explains why the proposed modification did not provide the expected improvement and thus was not implemented.
Technical Paper

The Generation of Tire Cornering Forces in Aircraft with a Free-Swiveling Nose Gear

1985-10-01
851939
Various conditions can cause an aircraft to assume a roll or tilt angle on the runway, causing the nose tire(s) to produce significant uncommanded cornering forces if the nose gear is free to swivel. An experimental investigation was conducted using a unique towing system to measure the cornering forces generated by a tilted aircraft tire. The effects of various parameters on these cornering forces including tilt angle, trail, rake angle, tire inflation pressure, vertical load, and twin-tire configuration were evaluated. Corotating twin-tires produced the most severe cornering forces due to tilt angle. A discussion of certain design and operational considerations is included.
Technical Paper

Tire and Runway Surface Research

1986-11-01
861618
The condition of aircraft tires and runway surfaces can be crucial in meeting the stringent demands of aircraft ground operations, particularly under adverse weather conditions. Gaining a better understanding of the factors influencing the tire/pavement interface is the aim of several ongoing NASA Langley research programs which are described in this paper. Results from several studies conducted at the Langley Aircraft Landing Dynamics Facility, tests with instrumented ground vehicles and aircraft, and some recent aircraft accident investigations are summarized to indicate effects of different tire and runway properties. The Joint FAA/NASA Runway Friction Program is described together with some preliminary test findings. The scope of future NASA Langley research directed towards solving aircraft ground operational problems related to the tire/pavement interface is given.
Technical Paper

Tire/Runway Friction Interface

1990-09-01
901912
Aircraft tire and runway surface conditions can be crucial in meeting aircraft ground operational performance requirements, particularly under adverse weather conditions. Gaining a better understanding of the many factors influencing the tire/runway friction interface is the aim of several ongoing NASA Langley research programs which are described in this paper. Results from studies conducted at the Langley Aircraft Landing Dynamics Facility (ALDF) and tests with instrumented ground vehicles are summarized to indicate effects of different tire and runway properties. Several joint NASA/FAA/Industry programs are described together with current test plans. The scope of future NASA Langley research directed towards solving aircraft ground operational problems related to the tire/runway friction interface is given.
X