Refine Your Search

Topic

Search Results

Journal Article

A Comprehensive Validation Method with Surface-Surface Comparison for Vehicle Safety Applications

2017-03-28
2017-01-0221
Computer Aided Engineering (CAE) models have proven themselves to be efficient surrogates of real-world systems in automotive industries and academia. To successfully integrate the CAE models into analysis process, model validation is necessarily required to assess the models’ predictive capabilities regarding their intended usage. In the context of model validation, quantitative comparison which considers specific measurements in real-world systems and corresponding simulations serves as a principal step in the assessment process. For applications such as side impact analysis, surface deformation is frequently regarded as a critical factor to be measured for the validation of CAE models. However, recent approaches for such application are commonly based on graphical comparison, while researches on the quantitative metric for surface-surface comparison are rarely found.
Technical Paper

A Design and Optimization Method for Pedestrian Lower Extremity Injury Analysis with the aPLI Model

2020-04-14
2020-01-0929
As pedestrian protection tests and evaluations have been officially incorporated into new C-NCAP, more stringent requirements have been placed on pedestrian protection performance. In this study, in order to reduce the injury of the vehicle front end structure to the pedestrian's lower extremity during the collision, the advanced pedestrian legform impactor (aPLI) model was used in conjunction with the finite element vehicle model for collision simulation based on the new C-NCAP legform test evaluation regulation. This paper selected the key components which have significant influences on the pedestrian's leg protection performance based on the CAE vehicle model, including front bumper, front-cover plate, upper impact pillar, impact beam and lower support plate, to form a simplified model and conducted parametric modeling based on it.
Technical Paper

A Dynamic Local Trajectory Planning and Tracking Method for UGV Based on Optimal Algorithm

2019-04-02
2019-01-0871
UGV (Unmanned Ground Vehicle) is gaining increasing amounts of attention from both industry and academic communities in recent years. Local trajectory planning is one of the most important parts of designing a UGV. However, there has been little research into local trajectory planning and tracking, and current research has not considered the dynamic of the surrounding environment. Therefore, we propose a dynamic local trajectory planning and tracking method for UGV driving on the highway in this paper. The method proposed in this paper can make the UGV travel from the navigation starting point to the navigation end point without collision on both straight and curve road. The key technology for this method is trajectory planning, trajectory tracking and trajectory update signal generation. Trajectory planning algorithm calculates a reference trajectory satisfying the demands of safety, comfort and traffic efficiency.
Technical Paper

A Feature-Based Responses Prediction Method for Simplified CAE Models

2019-04-02
2019-01-0516
In real-world engineering problems, the method of model simplification is usually adopted to increase the simulation efficiency. Nevertheless, the obtained simulation results are commonly with low accuracy. To research the impact from model simplification on simulation results, a feature-based predictive method for simplified CAE model analysis is proposed in this paper. First, the point clouds are used to represent the features of simplified model. Then the features are quantified according to the factors of position for further analysis. A formulated predictive model is then established to evaluate the responses of interest for different models, which are specified by the employed simplification methods. The proposed method is demonstrated through an engineering case. The results suggest that the predictive model can facilitate the analysis procedure to reduce the cost in CAE analysis.
Technical Paper

A Research on Multi-Disciplinary Optimization of the Vehicle Hood at Early Design Phase

2020-04-14
2020-01-0625
Vehicle hood design is a typical multi-disciplinary task. The hood has to meet the demands of different attributes like safety, dynamics, statics, and NVH (Noise, Vibration, Harshness). Multi-disciplinary optimization (MDO) of vehicle hood at early design phase is an efficient way to support right design decision and avoid late-phase design changes. However, due to lacking in CAD models, it is difficult to realize MDO at early design phase. In this research, a new method of design and optimization is proposed to improve the design efficiency. Firstly, an implicit parametric hood model is built to flexibly change shape and size of hood structure, and generate FE models automatically. Secondly, four types of stiffness analysis, one type of modal analysis, together with pedestrian head impact analysis were established to describe multi-disciplinary concern of vehicle hood design.
Technical Paper

A Research on the Body-in-White (BIW) Weight Reduction at the Conceptual Design Phase

2014-04-01
2014-01-0743
Vehicle weight reduction has become one of the essential research areas in the automotive industry. It is important to perform design optimization of Body-in-White (BIW) at the concept design phase so that to reduce the development cost and shorten the time-to-market in later stages. Finite Element (FE) models are commonly used for vehicle design. However, even with increasing speed of computers, the simulation of FE models is still too time-consuming due to the increased complexity of models. This calls for the development of a systematic and efficient approach that can effectively perform vehicle weight reduction, while satisfying the stringent safety regulations and constraints of development time and cost. In this paper, an efficient BIW weight reduction approach is proposed with consideration of complex safety and stiffness performances. A parametric BIW FE model is first constructed, followed by the building of surrogate models for the responses of interest.
Technical Paper

A Similarity Evaluation Metric for Mesh Based CAE Model Simplification and Its Application on Vehicle

2017-03-28
2017-01-1332
To obtain higher efficiency in analysis process, simplification methods for computer-aided engineering (CAE) models are required in engineering. Current model simplification methods can meet certain precision and efficiency requirement, but these methods mainly concentrate on model features while ignoring model mesh which is also critical to efficiency of the analysis process and preciseness of the results. To address such issues, an integrated mesh simplification and evaluation process is proposed in this paper. The mesh is simplified to fewer features (e.g. faces, edges, and vertices) through edge collapsing based on quadric error metric. Then curvatures and normal vectors which are the objects to be evaluated are extracted from the original and simplified models for comparison. To obtain accurate results, the geometric information of mesh nodes and elements are both considered in this evaluation process. The proposed method is implemented on a vehicle crash test.
Technical Paper

A Study of Driver's Driving Concentration Based on Computer Vision Technology

2020-04-14
2020-01-0572
Driving safety is an eternal theme of the transportation industry. In recent years, with the rapid growth of car ownership, traffic accidents have become more frequent, and the harm it brings to human society has become increasingly serious. In this context, car safety assisted driving technology has received widespread attention. As an effective means to reduce traffic accidents and reduce accident losses, it has become the research frontier in the field of traffic engineering and represents the trend of future vehicle development. However, there are still many technical problems that need to be solved. With the continuous development of computer vision technology, face detection technology has become more and more mature, and applications have become more and more extensive. This article will use the face detection technology to detect the driver's face, and then analyze the changes in driver's driving focus.
Technical Paper

An Integrated Deformed Surfaces Comparison Based Validation Framework for Simplified Vehicular CAE Models

2018-04-03
2018-01-1380
Significant progress in modeling techniques has greatly enhanced the application of computer simulations in vehicle safety. However, the fine-meshed impact models are usually complex and take lots of computational resources and time to conduct design optimization. Hence, to develop effective methods to simplify the impact models without losing necessary accuracy is of significant meaning in vehicle crashworthiness analysis. Surface deformation is frequently regarded as a critical factor to be measured for validating the accuracy of CAE models. This paper proposes an integrated validation framework to evaluate the inconsistencies between the deformed surfaces of the original model and simplified model. The geometric features and curvature information of the deformed surfaces are firstly obtained from crash simulation. Then, the magnitude and shape discrepancy information are integrated into the validation framework as the surface comparison objects.
Technical Paper

An Optimization Study of Occupant Restraint System for Different BMI Senior Women Protection in Frontal Impacts

2020-04-14
2020-01-0981
Accident statistics have shown that older and obese occupants are less adaptable to existing vehicle occupant restraint systems than ordinary middle-aged male occupants, and tend to have higher injury risk in vehicle crashes. However, the current research on injury mechanism of aging and obese occupants in vehicle frontal impacts is scarce. This paper focuses on the optimization design method of occupant restraint system parameters for specific body type characteristics. Three parameters, namely the force limit value of the force limiter in the seat belt, pretensioner preload of the seat belt and the proportionality coefficient of mass flow rate of the inflator were used for optimization. The objective was to minimize the injury risk probability subjected to constraints of occupant injury indicator values for various body regions as specified in US-NCAP frontal impact tests requirements.
Technical Paper

Analytic Study of China’s Latest New Energy Vehicle Market Subsidies in Facing of the Carbon Neutrality Goal

2023-04-11
2023-01-0742
In recent years, aimed to promote the improvement of China’s new energy vehicle market, a series of incentive policies issued by the Chinese government: including the new energy vehicle subsidy policy, the double credit policy, and the charging pile infrastructure subsidy.Relevant research on new energy vehicle industry is mainly ground on multi-stage game, this paper employs multi-agent games theory, and summarizes the multi-agent decision-making optimization method in differential game based on dynamic programming and reinforcement learning. Then, in the context of new energy vehicles, research and improve the industrial policy of new energy vehicles through this method.A multi-agent differential game decision-making optimization framework is proposed. Complex multi-agent differential game decisions can be solved using the dynamic programming solver or deep reinforcement learning solver in this framework. Case studies and some observations will be given in the end.
Technical Paper

Automotive Crashworthiness Design Optimization Based on Efficient Global Optimization Method

2018-04-03
2018-01-1029
Finite element (FE) models are commonly used for automotive crashworthiness design. However, even with increasing speed of computers, the FE-based simulation is still too time-consuming when simulating the complex dynamic process such as vehicle crashworthiness. To improve the computational efficiency, the response surface model, as the surrogate of FE model, has been widely used for crashworthiness optimization design. Before introducing the surrogate model into the design optimization, the surrogate should satisfy the accuracy requirements. However, the bias of surrogate model is introduced inevitably. Meanwhile, it is also very difficult to decide how many samples are needed when building the high fidelity surrogate model for the system with strong nonlinearity. In order to solve the aforementioned problems, the application of a kind of surrogate optimization method called Efficient Global Optimization (EGO) is proposed to conduct the crashworthiness design optimization.
Technical Paper

Automotive Hood Design Based on Machine Learning and Structural Design Optimization

2023-04-11
2023-01-0744
Nowadays, the automobile industry is booming and the number of vehicles is proliferating while the road traffic environment is also deteriorating. Therefore, attention should be paid to the protection of vulnerable road users in traffic accidents, such as pedestrians. In order to reduce the pedestrians’ head injury in collision accidents, in this study, the vehicle engine hood which responds significantly to head injuries was taken as the design object, so as to put forward a new optimization design process. The parameters of the hood’s main components, manufacturing materials and structural scheme were considered to carry out simultaneous optimization from various aspects such as pedestrian protection and hood stiffness.
Technical Paper

Bayesian Classifier Based Validation Method for Multivariate Systems

2016-04-05
2016-01-0284
Simulation models based design has become the common practice in automotive product development. Before applying these models in practice, model validation needs to be conducted to assess the validity of the models by comparing model predictions with experimental observations. In the validation process, it is vital to develop appropriate validation metrics for intended applications. When dealing with multivariate systems, comparisons between model predictions and test data with multiple responses would lead to conflicting decisions. To address this issue, this paper proposed a Bayesian classifier based validation method. With the consideration of both error rate and confidence in hypothesis testing, Bayesian classifier is developed for decision making. The process of validation is implemented on a real-world vehicle design case. The results show the proposed method’s potential in practical application.
Technical Paper

Coupled Game Theory-Based Kinematics Decision Making for Automatic Lane Change

2022-03-31
2022-01-7015
With the development of science and technology, breakthroughs have been made in the fields of intelligent algorithms, environmental perception, chip embedding, scene analysis, and multi-information fusion, which has prompted the wide attention of society, manufacturers and owners of autonomous vehicles. As one of the key issues in the research of autonomous vehicles, the research of vehicle lane change algorithm is of great significance to the safety of vehicle driving. This paper focuses on the conflict of interest between the lane-changing vehicle and the target lane vehicle in the fully autonomous driving environment, and proposes the method of coupling kinematics and game theory, so that when the vehicle is in the process of lane changing game, the lane-changing vehicle and the target lane vehicle can make decisions that are beneficial to the balance of interests of both sides.
Technical Paper

Crack Detection and Section Quality Optimization of Self-Piercing Riveting

2023-04-11
2023-01-0938
The use of lightweight materials is one of the important means to reduce the quality of the vehicle, which involves the connection of dissimilar materials, such as the combination of lightweight materials and traditional steel materials. The riveting quality of self-piercing riveting (SPR) technology will directly affect the safety and durability of automobiles. Therefore, in the initial joint development process, the quality of self-piercing riveting should be inspected and classified to meet safety standards. Based on this, this paper divides the self-piercing riveting quality into riveting appearance quality and riveting section quality. Aiming at the appearance quality of riveting, the generation of cracks on the lower surface of riveting will seriously affect the riveting strength. The existing method of identifying cracks on the lower surface of riveting based on artificial vision has strong subjectivity, low efficiency and cannot be applied on a large scale.
Technical Paper

Design Optimization of Vehicle Body NVH Performance Based on Dynamic Response Analysis

2017-03-28
2017-01-0440
Noise-vibration-harshness (NVH) design optimization problems have become major concerns in the vehicle product development process. The Body-in-White (BIW) plays an important role in determining the dynamic characteristics of vehicle system during the concept design phase. Finite Element (FE) models are commonly used for vehicle design. However, even though the speed of computers has been increased a lot, the simulation of FE models is still too time-consuming due to the increase in model complexity. For complex systems, like vehicle body structures, the numerous design variables and constraints make the FE simulations based optimization design inefficient. This calls for the development of a systematic and efficient approach that can effectively perform optimization to further improve the NVH performance, while satisfying the stringent design constraints.
Technical Paper

Design and Analysis of Vehicle Active Hood for Pedestrian Protection

2021-12-15
2021-01-7019
Pedestrian passive safety and active safety both develop rapidly, such as new structural hoods/airbags for pedestrian protection and emergency automatic braking/forward collision warning are used in advanced driver assistance system (ADAS). In this study, improved pedestrian passive safety is to obtain optimal hood structural parameters and add an active pop-up hood. Headform impactor, hood model, simplified vehicle and head impaction models were established, and nine key test points were selected for crash simulation tests. After the simulation, the pedestrian protection performance of the initial hood is evaluated and analyzed based on the head injury criterion (HIC) values. Combined with the orthogonal experimental design method, this study acquired the best structural parameters scheme and applied to the active pop-up hood.
Technical Paper

Development of Subject-Specific Elderly Female Finite Element Models for Vehicle Safety

2019-04-02
2019-01-1224
Previous study suggested that female, thin, obese, and older occupants had a higher risk of death and serious injury in motor vehicle crashes. Human body finite element models were a valuable tool in the study of injury biomechanics. The mesh deformation method based on radial basis function(RBF) was an attractive alternative for morphing baseline model to target models. Generally, when a complex model contained many elements and nodes, it was impossible to use all surface nodes as landmarks in RBF interpolation process, due to its prohibitive computational cost. To improve the efficiency, the current technique was to averagely select a set of nodes as landmarks from all surface nodes. In fact, the location and the number of selected landmarks had an important effect on the accuracy of mesh deformation. Hence, how to select important nodes as landmarks was a significant issue. In the paper, an efficient peak point-selection RBF mesh deformation method was used to select landmarks.
Journal Article

Development of a Comprehensive Validation Method for Dynamic Systems and Its Application on Vehicle Design

2015-04-14
2015-01-0452
Simulation based design optimization has become the common practice in automotive product development. Increasing computer models are developed to simulate various dynamic systems. Before applying these models for product development, model validation needs to be conducted to assess their validity. In model validation, for the purpose of obtaining results successfully, it is vital to select or develop appropriate metrics for specific applications. For dynamic systems, one of the key obstacles of model validation is that most of the responses are functional, such as time history curves. This calls for the development of a metric that can evaluate the differences in terms of phase shift, magnitude and shape, which requires information from both time and frequency domain. And by representing time histories in frequency domain, more intuitive information can be obtained, such as magnitude-frequency and phase-frequency characteristics.
X