Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 16290
Journal Article

0W-16 Fuel Economy Gasoline Engine Oil Compatible with Low Speed Pre-Ignition Performance

2017-10-08
2017-01-2346
It has been long established fact that fuel economy is a key driving force of low viscosity gasoline engine oil research and development considered by the original equipment manufacturers (OEMs) and lubricant companies. The development of low viscosity gasoline engine oils should not only focus on fuel economy improvement, but also on the low speed pre-ignition (LSPI) prevention property. In previous LSPI prevention literatures, the necessity of applying Ca/Mg-based detergents system in the engine oil formulations was proposed. In this paper, we adopted a specific Group III base oil containing Ca-salicylate detergent, borated dispersant, Mo-DTC in the formulation and investigated the various effects of Mg-salicylate and Mg-sulfonate on the performance of engine oil. It was found that Mg-sulfonate showed a significant detrimental impact on silicone rubber compatibility while the influence from Mg-salicylate remains acceptable.
Technical Paper

1-D MODEL DEVELOPMENT TO STUDY THE DYNAMIC BEHAVIOR OF THE MECHANICAL DIODE CONFIGURATION APPLIED TO ONE-WAY CLUTCH (OWC)

2009-10-06
2009-36-0230
Two types of One-Way Clutch (OWC) are commonly used in automotive applications – the roller and the sprag types. Some manufacturers claim the advantages of a different type of OWC having a mechanical diode OWC. The aim of this research is to study the mechanical diode system in order to point out reasons that explain why this configuration is not a spread out system in automotive applications that require lockup functionality. To achieve this objective the research work focuses on the development of 1-D models to simulate system behavior and evaluate product performance against design variables. Improvements to the system are suggested based on the simulation results.
Technical Paper

1-D Model of Radial Turbocharger Turbine Calibrated by Experiments

2002-03-04
2002-01-0377
The 1-D model of a radial centripetal turbine was developed for engine simulation to generalize and extrapolate the results of experiments to high pressure ratio or off-design velocity ratio using calibrated tuning coefficients. The model concerns a compressible dissipative flow in a rotating channel. It considers both bladed or vaneless turbine stators and a twin-entry stator for exhaust pulse manifolds. The experiments were used to find values of all model parameters (outlet flow angles, all loss coefficients including an impeller incidence loss) by an original method using repeated regression analysis. The model is suitable for the prediction of a turbocharger turbine operation and its optimization in 1-D simulation codes.
Technical Paper

1-D Simulation Model Developed for a General Purpose Engine

2016-11-08
2016-32-0030
In recent years, improvements in the fuel economy and exhaust emission performance of internal combustion engines have been increasingly required by regulatory agencies. One of the salient concerns regarding general purpose engines is the larger amount of CO emissions with which they are associated, compared with CO emissions from automobile engines. To reduce CO and other exhaust emissions while maintaining high fuel efficiency, the optimization of total engine system, including various design parameters, is essential. In the engine system optimization process, cycle simulation using 0-D and 1-D engine models are highly useful. To define an optimum design, the model used for the cycle simulation must be capable of predicting the effects of various parameters on the engine performance. In this study, a model for predicting the performance of a general purpose SI (Spark Ignited) engine is developed based on the commercially available engine simulation software, GT-POWER.
Journal Article

1-g Suit Port Concept Evaluator 2008 Test Results

2009-07-12
2009-01-2572
The Lunar Electric Rover (LER), which was formerly called the Small Pressurized Rover (SPR), is currently being carried as an integral part of the lunar surface architectures that are under consideration in the Constellation Program. One element of the LER is the suit port, which is the means by which crew members perform Extravehicular Activities (EVAs). Two suit port deliverables were produced in fiscal year 2008: a 1-g suit port concept evaluator for functional integrated testing with the LER 1-g concept vehicle and a functional and pressurizable Engineering Unit (EU). This paper focuses on the 1-g suit port concept evaluator test results from the Desert Research and Technology Studies (D-RATS) October 2008 testing at Black Point Lava Flow (BPLF), Arizona. The 1-g suit port concept evaluator was integrated with the 1-g LER cabin and chassis concepts.
Technical Paper

1000 kW Sodium-Sulfur Battery Pilot Plant: Its Operation Experience at Tatsumi Test Facility

1992-08-03
929055
Since 1978, the Agency of Industrial Science and Technology (AIST) of MITI has promoted research and development of “Large-Scale Energy Conservation Technology” popularly known as the “Moonlight Project”. As the first step, “system technology tests” using improved lead acid batteries started at Kansai Electric's Tatsumi Electric Energy Storage System Test Plant on October 1, 1986. The results showed that this system can work not only as a load-leveling apparatus but also as a high-quality power source which can support the utility power system with its load frequency control and voltage regulation capabilities. As the second step of these R&D activities, a 1MW/8MWh sodium-sulfur battery pilot plant was constructed at the same Tatsumi site. On July 11, 1991, 1000 kW× 8H facility, the largest of its type in the world, was completed and started operation. This paper describes the construction experience and operation results of the pilot plant.
Technical Paper

11 Rules of Design for Manufacturing when Producing Pre-Impregnated Carbon Fiber-Reinforced Plastic Components - an Application at SAAB Aerostructures

2016-09-27
2016-01-2124
Carbon fiber-reinforced plastic (CFRP) is one of the most commonly used materials in the aerospace industry today. CFRP in pre-impregnated form is an anisotropic material whose properties can be controlled to a high level by the designer. Sometimes, these properties make the material hard to predict with regards to how the geometry affects manufacturing aspects. This paper describes eleven design rules originating from different guidelines that describe geometrical design choices and deals with manufacturability problems that are connected to them, why they are connected and how they can be minimized or avoided. Examples of design choices dealt with in the rules include double curvature shapes, assembly of uncured CFRP components and access for non-destructive testing (NDT). To verify the technical content and ensure practicability, the rules were developed by, inter alia, studying literature and performing case studies at SAAB Aerostructures.
Technical Paper

125cc Small Engine Fuel Injection System with Low Emissions Solutions

2004-09-27
2004-32-0094
In many countries of the world, carburetor motorcycles are the major transportation system for people. The large volumes of these motorcycles contribute to high levels of urban emissions and this fact promotes the relevant emissions regulations to become more stringent. This paper presents an approach to satisfy various new emissions regulations such as Euro-III and Taiwan 4th generation emissions regulations by optimizing the 4-stroke PFI (Port Fuel Injection) engine management system (EMS) and after-treatment system.
Technical Paper

135 Days in Isolation and Confinement: The Hubes Simulation

1995-07-01
951512
The EUROMIR-95 flight was selected as model for the HUBES experiment: a similar duration (135 days), a similar crew (3 men), similar schedule organisation (8 hours work, 8 hours sleep, 8 hours off-duties), similar workload for the crew and the mission control (performance of scientific experiments), similar setup for communication and data processing, and similar layout of the MIR station, as the simulation was performed in the MIR simulator located at the Institute for BioMedical Problems (IBMP) in Moscow. The Scientific Programme of HUBES had been elaborated by integration of 31 experiments from more than 80 research proposals from Principal Investigators from Europe, USA and Russia, in domains of Physiology, Psychology, Operations and Technology.
Technical Paper

180 Cu Yd Stripping Shovel

1967-02-01
670745
Because of the size and weight of the various components going into the machine, new approaches were used to solve the practical limitations of manufacturing facilities, shipping clearances, and erection procedures. Although the general appearance of the machine is similar to previous units, there are a number of new design features incorporated in the unit. This paper will be limited to the major design considerations as follows: adaption to stripping two seams of coal simultaneously; dipper with two doors; computerized hydraulic steering maintaining Ackerman correction; double end drive crawlers and belt tensioning; and electrical innovations.
Technical Paper

1937 Road Knock Tests

1938-01-01
380145
THIS paper deals with the road-test portion of the extensive efforts made during 1937 by the Cooperative Fuel Research Committee to get as precise a correlation as possible between the laboratory knock ratings of automobile fuels and their corresponding ratings in cars on the road. It is anticipated that the comprehensive results of car tests reported here, taken together with the results of the laboratory rating program reported in the companion paper, will serve as the basis of the continuing studies aimed at developing the best possible correlation between road and laboratory knock ratings. Work similar to that reported here has been conducted concurrently in England by the Institution of Petroleum Technologists, using British cars and fuels. An exchange of information between the British and American groups working on this problem is being made.
Technical Paper

1940 ROAD DETONATION TESTS - (Compiled from Report1 of The Cooperative Fuel Research Committee)

1941-01-01
410107
THE 1940 CFR Road Tests have developed new information that can be used for the development of fuels and engines. Application of the principles worked out in these tests is expected to result in a more efficient utilization of fuel antiknock properties and more effective engine design and adjustment to meet the requisites of current motor fuels. These tests indicate that the ASTM octane number alone, or even a road octane number as determined by methods heretofore widely used, does not give sufficient information for present needs relative to fuel behavior in service. Neither do test methods previously used provide sufficient information concerning the fuel requirements and knocking characteristics of engines. The new methods of approach which have been developed furnish needed information relative to the fuel and engine relationship that heretofore has been obscure, and indicate paths for future developments.
Technical Paper

1970s Development of 21st Century Mobile Dispersed Power

1973-02-01
730709
A mobile and dispersed power system is necessary for an advanced technological-industrial society. Today's petroleum-based system discharges waste products and heat and is growing exponentially. Energy resource commitment has already intersected “ultimate” low-cost petroleum supplies in the United States and will do so for the world before 2000; this portends major changes and cost increases. The twenty-first century system for mobile-dispersed power will reflect the energy source selected to replace petroleum-for example, coal, solar insolation, or uranium. It will incorporate a fuel intermediate such as methanol, ammonia, or hydrogen, and a suitably matched “engine.” The complete change will require more than 25 years because of the magnitude, fragmentation, structural gaps, complexity, and variety of the mobile-dispersed power system.
Technical Paper

1980 CRC Fuel Rating Program - The Effects of Heavy Aromatics and Ethanol on Gasoline Road Octane Ratings

1982-02-01
821211
A gasoline Road Octane study was conducted by the Coordinating Research Council (CRC) to evaluate the effects of heavy aromatics (C9 and heavier) and ethanol content on Road Octane performance independent of Research Octane Number (RON) and Motor Octane Number (MON). Maximum-throttle and part-throttle Road ON’s were found to be well predicted by equations containing only RON and MON terms. Heavier aromatics were found to have a small adverse effect on both maximum-throttle and part-throttle Road ON independent of its direct effects on RON and MON. The all-car data did not show a significant ethanol-content effect, but eight of the thirty-seven cars did show significant effects for ethanol content.
Technical Paper

1989 Suzuki Sidekick/Geo Tracker Body structure Analysis

1989-11-01
892536
This paper presents a summary of body structural analysis applied to the 1989 Suzuki Sidekick/Geo Tracker at various stages of development and design. The structure analysis techniques were applied previously to rigidity, vibration, strength, crashworthiness and optimization. The studies confirm that the CAE technique for body structure analysis is more beneficial if it is utilized in the earlier structure development stages particularly for vibration and crashworthiness. Through the extensive use of the structural analysis technique in conjunction with the experiment, the design concept of the Sidekick/Tracker body has been optimized to a most extent.
Technical Paper

1D Simulation of Turbocharged Gasoline Direct Injection Engine for Transient Strategy Optimization

2005-04-11
2005-01-0693
This paper presents 1D engine simulation used for engine control strategy optimization for a twin-scroll turbocharged gasoline direct injection 2.0 L engine with twin camphaser. The results show good agreement of the engine model behavior with testbed acquisitions for a large amount of steady state set points and under transient operating conditions. The presented method demonstrates that a 1D engine code represents a useful and efficient tool during all steps of the engine control development process from design to real-time for such an advanced engine technology.
Technical Paper

1D Tire Model Parameter Synthesis for Vehicle Handling Targets Assessment “A Strategy of Optimization and Evaluation of Tire Math’s”

2019-01-09
2019-26-0361
Handling performance of a vehicle is a key characteristic determining the response of vehicle under different operating scenarios. An insight into these vehicle-handling characteristics at early stage can be extremely useful in the design and development process. Tire characterization and tuning is important and mandatory to scrutinize each functional and individual parameter of tire. Tire force and moment data is having a significant effect in vehicle handling. Segregation of tire parameter, which is contributing vehicle-handling performance, helps to identify and perform optimization for improvisation. The main objective of this study is development and integration optimized 1D tire model into multibody dynamics model of the vehicle to observe various vehicle compliances towards its handling performance target.
Technical Paper

2-Door Vehicle Body Local Force Evaluation with the IIHS, EuroNCAP, and LINCAP Side Impact Barriers

2004-03-08
2004-01-0333
Structure enhancement based on data monitored in a traditional side impact evaluation is primarily a trial and error exercise resulting in a large number of computer runs. This is because how the structure gets loaded and the degree of contribution of local structural components to resist the impact while absorbing energy during a side collision is not completely known. Developing real time complete load profiles on a body side during the time span of an impact is not an easy task and these loads cannot be calculated from that calculated at the barrier mounting plate. This paper highlights the load distribution, calculated by a procedure using computer aided engineering (CAE) tools, on a typical 2-door vehicle body side when struck by moving deformable barriers used in the insurance institute for highway safety (IIHS), EuroNCAP and LINCAP side impact evaluations.
Technical Paper

2005 Ford GT - Melding the Past and the Future

2004-03-08
2004-01-1251
The 2005 Ford GT high performance sports car was designed and built in keeping with the heritage of the 1960's LeMans winning GT40 while maintaining the image of the 2002 GT40 concept vehicle. This paper reviews the technical challenges in designing and building a super car in 12 months while meeting customer expectations in performance, styling, quality and regulatory requirements. A team of dedicated and performance inspired engineers and technical specialists from Ford Motor Company Special Vehicle Teams, Research and Advanced Engineering, Mayflower Vehicle Systems, Roush Industries, Lear, and Saleen Special Vehicles was assembled and tasked with designing the production 2005 vehicle in record time.
Technical Paper

2005 Ford GT Powertrain - Supercharged Supercar

2004-03-08
2004-01-1252
The Ford GT powertrain (see Figure 1) is an integrated system developed to preserve the heritage of the LeMans winning car of the past. A team of co-located engineers set out to establish a system that could achieve this result for today's supercar. Multiple variations of engines, transaxles, cooling systems, component locations and innovations were analyzed to meet the project objectives. This paper covers the results and achievements of that team.
X