Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Air and Water System (AWS) Design and Technology Selection for the Vision for Space Exploration

2005-07-11
2005-01-2810
This paper considers system design and technology selection for the crew air and water recycling systems to be used in long duration human space exploration. The ultimate objective is to identify the air and water technologies likely to be used for the vision for space exploration and to suggest alternate technologies that should be developed. The approach is to conduct a preliminary systems engineering analysis, beginning with the Air and Water System (AWS) requirements and the system mass balance, and then to define the functional architecture, review the current International Space Station (ISS) technologies, and suggest alternate technologies.
Technical Paper

Crop Models for Varying Environmental Conditions

2002-07-15
2002-01-2520
New variable environment Modified Energy Cascade (MEC) crop models were developed for all the Advanced Life Support (ALS) candidate crops and implemented in SIMULINK. The MEC models are based on the Volk, Bugbee, and Wheeler Energy Cascade (EC) model and are derived from more recent Top-Level Energy Cascade (TLEC) models. The MEC models were developed to simulate crop plant responses to day-to-day changes in photosynthetic photon flux, photoperiod, carbon dioxide level, temperature, and relative humidity. The original EC model allowed only changes in light energy and used a less accurate linear approximation. For constant nominal environmental conditions, the simulation outputs of the new MEC models are very similar to those of earlier EC models that use parameters produced by the TLEC models. There are a few differences. The new MEC models allow setting the time for seed emergence, have more realistic exponential canopy growth, and have corrected harvest dates for potato and tomato.
Technical Paper

Designing to Mitigate Food Growing Failures in Space

2004-07-19
2004-01-2582
Future space life support systems may use crop plants to grow most of the crew’s food. A harvest failure can reduce the food available for future consumption. If the previously stored food is insufficient to last until the next harvest, the crew may go hungry. This paper considers how the overall food supply system should be designed to cope with food production failures. The food supply system for a mission will use grown food, or stored food, or both. The optimum food supply mix depends on the costs and failure probabilities of stored and grown food. A simple food system model assumes that either we obtain the nominal harvest or a failure occurs and no food is harvested. Given the probability that any particular harvest fails, it is easy to compute the expected number of failures and the total food shortfall over a mission.
Technical Paper

Evaluation of Fieldbus and Software Component Technologies for Use with Advanced Life Support

2001-07-09
2001-01-2299
Industrial process control has been dominated by closed architectures and proprietary protocols for the last three decades. In the late 1990’s, the advent of open fieldbus and middleware standards has greatly changed the process control arena. Fieldbus has pushed control closer and closer to the process itself. Middleware standards have exposed real-time process data to higher level software applications. Control systems can now be designed to minimize the reconfiguration costs associated with design changes. How can Advanced Life Support (ALS) benefit from these technologies? We consider designing the control system for the BIO-Plex and evaluate how complex it will be, the effort it will require, and how much it will it cost. Various fieldbus technologies were compared and Foundation Fieldbus was chosen for detailed evaluation. This new fieldbus was integrated with an existing ALS system.
Technical Paper

Evolution of Life Support from Apollo, Shuttle, and ISS to the Vision for the Moon and Mars

2006-07-17
2006-01-2013
The Environmental Control and Life Support (ECLS) requirements to reach the International Space Station (ISS), the Moon, and Mars as part of the Vision for Space Exploration (VSE) are similar to the earlier ECLS requirements for Apollo, Space Shuttle, and ISS. It seems reasonable that the VSE life support designs will develop in the same way. The ECLS for spacecraft to reach ISS and the Moon can use the Shuttle and Apollo approaches. However, the long duration ECLS for the Moon base should be the same as for Mars, because the Moon will be the testbed for Mars. The ECLS for Mars could be similar to that of ISS, but it should be redesigned to incorporate lessons learned, to take advantage of twenty years technical progress, and to respond to the much more difficult launch mass and reliability requirements for Mars.
Technical Paper

Integrated Systems Testing of Spacecraft

2007-07-09
2007-01-3144
How much integrated system level test should be performed on a spacecraft before it is launched? Although sometimes system test is minimized, experience shows that systems level testing should be thorough and complete. Reducing subsystem testing is a less dangerous way to save cost, since it risks finding problems later in system test, while cutting systems test risks finding them even later on orbit. Human-rated spacecraft test planning is informal, subjective, and inconsistent, and its extent is often determined by the decision maker's risk tolerance, decision-making style, and long-term or short-term view. Decisions on what to test should be guided by an overall mission cost-benefit analysis, similar to the risk analysis used to guide development efforts.
Technical Paper

Lunar Base Life Support Failure Analysis and Simulation

2009-07-12
2009-01-2482
Dynamic simulation of the lunar outpost habitat life support was undertaken to investigate the impact of life support failures and to investigate possible responses. Some preparatory static analysis for the Lunar Outpost life support model, an earlier version of the model, and an investigation into the impact of Extravehicular Activity (EVA) were reported previously. (Jones, 2008-01-2184, 2008-01-2017) The earlier model was modified to include possible resupply delays, power failures, recycling system failures, and atmosphere and other material storage failures. Most failures impact the lunar outpost water balance and can be mitigated by reducing water usage. Food solids and nitrogen can be obtained only by resupply from Earth. The most time urgent failure is a loss of carbon dioxide removal capability. Life support failures might be survivable if effective operational solutions are provided in the system design.
Technical Paper

Matching Crew Diet and Crop Food Production in BIO-Plex

2000-07-10
2000-01-2397
This paper matches the BIO-Plex crop food production to the crew diet requirements. The expected average calorie requirement for BIO-Plex is 2,975 Calories per crewmember per day, for a randomly selected crew with a typical level of physical activity. The range of 2,550 to 3,400 Calories will cover about two-thirds of all crews. The exact calorie requirement will depend on the gender composition, individual weights, exercise, and work effort of the selected crew. The expected average crewmember calorie requirement can be met by 430 grams of carbohydrate, 100 grams of fat, and 90 grams of protein per crewmember per day, for a total of 620 grams. Some fat can replaced by carbohydrate. Each crewmember requires only 2 grams of vitamins and minerals per day. Only unusually restricted diets may lack essential nutrients. The Advanced Life Support (ALS) consensus is that BIO-Plex should grow wheat, potato, and soybean, and maybe sweet potato or peanut, and maybe lettuce and tomato.
Technical Paper

Multiple Metrics for Advanced Life Support

1999-07-12
1999-01-2079
The Government Performance and Results Act (GPRA) requires NASA and other federal agencies to use goals and metrics. Many Advanced Life Support (ALS) goals and metrics are described in the ALS Program Plan and others have been used in designing life support for the International Space Station (ISS) and earlier missions. These well-established goals can be monitored using familiar metrics. The most important goal of ALS is to have missions successfully fly new life support technology. A new ALS technology will be flown if it provides better safety, availability, performance, or cost. Improvements in these four criteria are the major supporting goals of ALS. An ideal candidate technology would also provide increased self-sufficiency, be useful on different types of missions, and have high potential for technology transfer, but these are incidental benefits that are not required for successful flight.
Technical Paper

Power Management for Space Advanced Life Support

2002-07-15
2002-01-2527
Space power systems include power source, storage, and management subsystems. In current crewed spacecraft designs, solar cells are the power source, batteries provide storage, and the crew performs any required load scheduling. For future crewed planetary surface systems using Advanced Life Support, we assume that plants will be grown to produce much of the crew's food and that nuclear power will be employed. Battery storage is much more costly than nuclear power capacity and so is not likely to be provided. We investigate scheduling of power demands to reduce the required peak power generating capacity. The peak to average power ratio is a good measure of power capacity efficiency. We can easily schedule power demands to reduce the peak power below the potential maximum, but simple scheduling rules may not achieve the lowest possible peak to average power ratio.
X