Refine Your Search

Topic

Search Results

Technical Paper

A Four Stroke Camless Engine, Operated in Homogeneous Charge Compression Ignition Mode with Commercial Gasoline

2001-09-24
2001-01-3610
A single cylinder, naturally aspirated, four-stroke and camless (Otto) engine was operated in homogeneous charge compression ignition (HCCI) mode with commercial gasoline. The valve timing could be adjusted during engine operation, which made it possible to optimize the HCCI engine operation for different speed and load points in the part-load regime of a 5-cylinder 2.4 liter engine. Several tests were made with differing combinations of speed and load conditions, while varying the valve timing and the inlet manifold air pressure. Starting with conventional SI combustion, the negative valve overlap was increased until HCCI combustion was obtained. Then the influences of the equivalence ratio and the exhaust valve opening were investigated. With the engine operating on HCCI combustion, unthrottled and without preheating, the exhaust valve opening, the exhaust valve closing and the intake valve closing were optimized next.
Journal Article

An Evaluation of Different Combustion Strategies for SI Engines in a Multi-Mode Combustion Engine

2008-04-14
2008-01-0426
Future pressures to reduce the fuel consumption of passenger cars may require the exploitation of alternative combustion strategies for gasoline engines to replace, or use in combination with the conventional stoichiometric spark ignition (SSI) strategy. Possible options include homogeneous lean charge spark ignition (HLCSI), stratified charge spark ignition (SCSI) and homogeneous charge compression ignition (HCCI), all of which are intended to reduce pumping and thermal losses. In the work presented here four different combustion strategies were evaluated using the same engine: SSI, HLCSI, SCSI and HCCI. HLCSI was achieved by early injection and operating the engine lean, close to its stability limits. SCSI was achieved using the spray-guided technique with a centrally placed multi-hole injector and spark-plug. HCCI was achieved using a negative valve overlap to trap hot residuals and thus generate auto-ignition temperatures at the end of the compression stroke.
Technical Paper

An Experimental Investigation of Fischer-Tropsch Fuels in a Light-Duty Diesel Engine

2007-01-23
2007-01-0030
Experiments were performed using a Light-Duty, single-cylinder, research engine in which the emissions, fuel consumption and combustion characteristics of two Fischer-Tropsch (F-T) Diesel fuels derived from natural gas and two conventional Diesel fuels (Swedish low sulfur Diesel and European EN 590 Diesel) were compared. Due to their low aromatic contents combustion with the F-T Diesel fuels resulted in lower soot emissions than combustion with the conventional Diesel fuels. The hydrocarbon emissions were also significantly lower with F-T fuel combustion. Moreover the F-T fuels tended to yield lower CO emissions than the conventional Diesel fuels. The low emissions from the F-T Diesel fuels, and the potential for producing such fuels from biomass, are powerful reason for future interest and research in this field.
Journal Article

An Experimental Study on the Use of Butanol or Octanol Blends in a Heavy Duty Diesel Engine

2015-09-06
2015-24-2491
Global warming driven by “greenhouse gas” emissions is an increasingly serious concern of both the public and legislators. A potentially potent way to reduce these emissions and conserve fossil fuel resources is to use n-butanol, iso-butanol or octanol (2-ethylhexanol) from renewable sources as alternative fuels in diesel engines. The effects of adding these substances to diesel fuel were therefore tested in a single-cylinder heavy duty diesel engine operated using factory settings. These alcohols have better calorific values, flash points, lubricity, cetane numbers and solubility in diesel than shorter-chain alcohols. However, they have lower cetane numbers than diesel, so either hydrotreated vegetable oil (HVO) or Di-tertiary-butyl peroxide (DTBP) was added to the diesel-alcohol mixtures to generate blends with the same Cetane Number (CN) as diesel.
Technical Paper

Analysis of Advanced Multiple Injection Strategies in a Heavy-Duty Diesel Engine Using Optical Measurements and CFD-Simulations

2008-04-14
2008-01-1328
In order to meet future emissions legislation for Diesel engines and reduce their CO2 emissions it is necessary to improve diesel combustion by reducing the emissions it generates, while maintaining high efficiency and low fuel consumption. Advanced injection strategies offer possible ways to improve the trade-offs between NOx, PM and fuel consumption. In particular, use of high EGR levels (⥸ 40%) together with multiple injection strategies provides possibilities to reduce both engine-out NOx and soot emissions. Comparisons of optical engine measurements with CFD simulations enable detailed analysis of such combustion concepts. Thus, CFD simulations are important aids to understanding combustion phenomena, but the models used need to be able to model cases with advanced injection strategies.
Technical Paper

Combustion and Emissions in a Light-Duty Diesel Engine Using Diesel-Water Emulsion and Diesel-Ethanol Blends

2009-11-02
2009-01-2695
The purpose of the investigation presented here was to compare the effects of fuel composition on combustion parameters, emissions and fuel consumption in engine tests and simulations with five fuels: a Diesel-water emulsion, a Diesel-ethanol blend, a Diesel-ethanol blend with EHN (cetane number improver), a Fischer-Tropsch Diesel and an ultra-low sulfur content Diesel. The engine used in the experiments was a light duty, single cylinder, direct injection, common rail Diesel engine equipped with a cylinder head and piston from a Volvo NED5 engine. In tests with each fuel the engine was operated at two load points (3 bar IMEP and 10 bar IMEP), and a pilot-main fuel injection strategy was applied under both load conditions. Data were also obtained from 3-D CFD simulations, using the KIVA code, to compare to the experimental results and to further analyze the effects of water and ethanol on combustion.
Technical Paper

Combustion of Fischer-Tropsch, RME and Conventional Fuels in a Heavy-Duty Diesel Engine

2007-10-29
2007-01-4009
This investigation includes a comparison of two Fischer Tropsch (FT) fuels derived from natural gas and a Rapeseed Methyl Ester (RME) fuel with Swedish low sulfur Diesel in terms of emissions levels, fuel consumption and combustion parameters. The engine used in the study was an AVL single cylinder heavy-duty engine, equipped with a cylinder head of a Volvo D12 engine. Two loads (25% and 100%) were investigated at a constant engine speed of 1200 rpm. The engine was calibrated to operate in different levels of EGR and with variable injections timings. A design of experiments was constructed to investigate the effects of these variables, and to identify optimal settings. The results showed that the soot emissions yielded by FT and RME fuels are up to 40 and 80 percent lower than those yielded by the Swedish Diesel. In addition the FT fuel gave slightly lower, and the RME significant higher NOx emissions than the Swedish Diesel.
Technical Paper

Development Experience of a Multi-Cylinder CCVS Engine

1995-02-01
950165
A system for stratifying recycled exhaust gas (EGR) to substantially increase dilution tolerance has been applied to a multi-cylinder port injected four-valve gasoline engine. This system, dubbed Combustion Control through Vortex Stratification (CCVS), has shown greatly improved fuel consumption at stoichiometric conditions whilst retaining ULEV compatible engine-out NOx and HC emission levels. A production feasible variable air motion system has also been assessed which enables stratification at part load with no loss of performance or refinement at full load.
Technical Paper

Diesel Combustion with Reduced Nozzle Orifice Diameter

2001-05-07
2001-01-2010
Future emission legislation will require substantial reductions of NOx and particulate matter (PM) emissions from diesel engines. The combustion and emission formation in a diesel engine is governed mainly by spray formation and mixing. Important parameters governing these are droplet size, distribution, concentration and injection velocity. Smaller orifices are believed to give smaller droplet size, even with reduced injection pressure, which leads to better fuel atomization, faster evaporation and better mixing. In this paper experiments are performed on a single cylinder heavy-duty direct injection diesel engine with three nozzles of different orifice diameters (Ø0.227 mm, Ø0.130 mm, Ø0.090 mm). Two loads (low and medium) and three speeds were investigated. The test results confirmed a substantial reduction in HC and soot emissions at lower loads for the small orifices.
Technical Paper

Drive Cycle Particulate and Gaseous Emissions from a Parallel Hybrid Combustion Engine and Electric Powertrain

2015-09-06
2015-24-2538
The emissions from a parallel hybrid combustion engine and electric powertrain operated on a modified New European Drive Cycle (NEDC) was investigated in order to determine the relation between emissions and the road and engine load profile. The effect of simulated electric motor assistance during accelerations on emissions was investigated as a means to reduce particulate and gaseous emissions. The time resolved particulate number and size distribution was measured in addition to gaseous emissions. The combustion engine was a downsized, three cylinder spark ignited direct injection (SIDI) turbocharged engine fuelled with gasoline. Electric motor assistance during accelerations was simulated by reduction of the vehicle mass. This reduced engine load during accelerations. Fuel rich engine transients occurred during accelerations. NOx emissions were reduced with electric assistance due to a reduction in engine load.
Technical Paper

Effect of Injection Parameters on Auto-Ignition and Soot Formation in Diesel Sprays

2001-09-24
2001-01-3687
A validation study of the numerical model of n-heptane spray combustion based on experimental constant-volume data [1] was done, by comparing auto-ignition delays for different pre - turbulence levels and initial temperatures, flame contours, and soot distributions under Diesel-like conditions. The basic novelty of the methodology developed in [2] - [3] is the implementation of the partially stirred reactor (PaSR) model accounting for detailed chemistry / turbulence interactions. It is based on the assumption that the chemical processes proceed in two successive steps: micro mixing, simulated on a sub - grid scale, is followed by the reaction act. When the all Re number RNG k-ε or LES models are employed, the micro mixing time can be consistently defined giving the combustion model a “well-closed” form incorporated into the KIVA-3V code.
Technical Paper

Effect of Injection Strategy and EGR on Particle Emissions from a CI Engine Fueled with an Oxygenated Fuel Blend and HVO

2021-04-06
2021-01-0560
Alcohol-based fuels are a viable alternative to fossil fuels for powering vehicles. As a drop-in fuel, an oxygenated fuel blend containing the C8 alcohol 2-ethylhexanol (isomer of octanol), hydrotreated vegetable oil (HVO) and rapeseed methyl ester (RME) can reduce soot and NOx emissions whilst maintaining engine performance. However, fuel injection strategy significantly affects combustion and hence has been investigated with a view to reducing emissions whilst maintaining engine efficiency. In a single cylinder light-duty compression ignition research engine, the effect of different injection strategies (main, main/post, double pre/main, double pre/main/post injection) and EGR levels (0%, 19%) on specifically NOx, soot emissions and particle size distribution was investigated for three different fuels: fossil diesel fuel, HVO and the oxygenated blend. The blend was designed to have diesel-like combustion properties (cetane number of 52) and had an oxygen content of 5.4% by mass.
Technical Paper

Effects of Variable Inlet Valve Timing and Swirl Ratio on Combustion and Emissions in a Heavy Duty Diesel Engine

2012-09-10
2012-01-1719
In order to avoid the high CO and HC emissions associated with low temperature when using high levels of EGR, partially premixed combustion is an interesting possibility. One way to achieve this combustion mode is to increase the ignition delay by adjusting the inlet valve closing timing, and thus the effective compression ratio. The purpose of this study was to investigate experimentally the possibilities of using late and early inlet valve closure to reduce NOx emissions without increasing emissions of soot or unburned hydrocarbons, or fuel consumption. The effect of increasing the swirl number (from 0.2 to 2.5) was also investigated. The combustion timing (CA50) was kept constant by adjusting the start of injection and the possibilities of optimizing combustion using EGR and high injection pressures were investigated. Furthermore, the airflow was kept constant for a given EGR level.
Technical Paper

Effects of Varying Engine Settings on Combustion Parameters, Emissions, Soot and Temperature Distributions in Low Temperature Combustion of Fischer-Tropsch and Swedish Diesel Fuels

2009-11-02
2009-01-2787
It has been previously shown that engine-out soot emissions can be reduced by using Fischer-Tropsch (FT) fuels, due to their lack of aromatics, compared to conventional Diesel fuels. In this investigation the engine-out emissions and fuel consumption parameters of an FT fuel derived from natural gas were compared to those of Swedish low sulfur diesel (MK1) when used in Low Temperature Combustion mode in a single cylinder heavy-duty diesel engine. The effects of varying Needle Opening Pressure (NOP), Charge Air Pressure (CAP) and Exhaust Gas Recirculation (EGR) according to an experimental design on the measured variables were also assessed. CAP and EGR were found to be the most significant factors for the combustion and emission parameters of both fuels. Increases in CAP resulted in lower soot emissions due to enhanced charge mixing, however NOx emissions rose as CAP increased.
Technical Paper

Experimental Investigation of the Effect of Needle Opening (NOP) Pressure on Combustion and Emissions Formation in a Heavy Duty DI Diesel Engine

2004-10-25
2004-01-2921
This paper presents an investigation of the effects of varying needle opening pressure (NOP) (375 to 1750 bar), engine speed (1000 rpm to 1800 rpm), and exhaust gas recirculation (EGR) (0% to 20 %) on the combustion process, exhaust emissions, and fuel consumption at low (25 %) and medium (50 %) loads in a single cylinder heavy duty DI diesel research engine with a displacement of 2.02 l. The engine was equipped with an advanced two-actuator E3 Electronic Unit Injector (EUI) from Delphi Diesel, with a maximum injection pressure of 2000 bar. In previous versions of the EUI system, the peak injection pressure was a function of the injection duration, cam lift, and cam rate. The advanced EUI system allows electronic control of the needle opening and closing. This facilitates the generation of high injection pressures, independently of load and speed.
Technical Paper

Experimental and Numerical Investigation of Split Injections at Low Load in an HDDI Diesel Engine Equipped with a Piezo Injector

2006-10-16
2006-01-3433
In order to investigate the effects of split injection on emission formation and engine performance, experiments were carried out using a heavy duty single cylinder diesel engine. Split injections with varied dwell time and start of injection were investigated and compared with single injection cases. In order to isolate the effect of the selected parameters, other variables were kept constant. In this investigation no EGR was used. The engine was equipped with a common rail injection system with a piezo-electric injector. To interpret the observed phenomena, engine CFD simulations using the KIVA-3V code were also made. The results show that reductions in NOx emissions and brake specific fuel consumption were achieved for short dwell times whereas they both were increased when the dwell time was prolonged. No EGR was used so the soot levels were already very low in the cases of single injections.
Technical Paper

HCCI Operation of a Passenger Car Common Rail DI Diesel Engine With Early Injection of Conventional Diesel Fuel

2004-03-08
2004-01-0935
The possibilities of operating a direct injection Diesel engine in HCCI combustion mode with early injection of conventional Diesel fuel were investigated. In order to properly phase the combustion process in the cycle and to prevent knock, the geometric compression ratio was reduced from 17.0:1 to 13.4:1 or 11.5:1. Further control of the phasing and combustion rate was achieved with high rates of cooled EGR. The engine used for the experiments was a single cylinder version of a modern passenger car type common rail engine with a displacement of 480 cc. An injector with a small included angle was used to prevent interaction of the spray and the cylinder liner. In order to create a homogeneous mixture, the fuel was injected by multiple short injections during the compression stroke. The low knock resistance of the Diesel fuel limited the operating conditions to low loads. Compared to conventional Diesel combustion, the NOx emissions were dramatically reduced.
Technical Paper

Improving the NOx/Fuel Economy Trade-Off for Gasoline Engines with the CCVS Combustion System

1994-03-01
940482
A system for stratifying recycled exhaust gas (EGR) in order to substantially increase dilution tolerance has been applied to a single cylinder manifold injected pent-roof four-valve gasoline engine. This system has been given the generic name Combustion Control by Vortex Stratification (CCVS). Preliminary research has shown that greatly improved fuel consumption is achievable at stoichiometric conditions compared to a conventional version of the same engine whilst retaining ULEV NOx levels. Simultaneously the combustion system has shown inherently low HC emissions compared to homogeneous EGR engines. A production viable variable air motion system has also been assessed which increases the effectiveness of the stratification whilst allowing full load refinement and retaining high performance.
Technical Paper

Location of the First Auto-Ignition Sites for Two HCCI Systems in a Direct Injection Engine

2004-03-08
2004-01-0564
To elucidate the processes controlling the auto-ignition timing and overall combustion duration in homogeneous charge compression ignition (HCCI) engines, the distribution of the auto-ignition sites, in both space and time, was studied. The auto-ignition locations were investigated using optical diagnosis of HCCI combustion, based on laser induced fluorescence (LIF) measurements of formaldehyde in an optical engine with fully variable valve actuation. This engine was operated in two different modes of HCCI. In the first, auto-ignition temperatures were reached by heating the inlet air, while in the second, residual mass from the previous combustion cycle was trapped using a negative valve overlap. The fuel was introduced directly into the combustion chamber in both approaches. To complement these experiments, 3-D numerical modeling of the gas exchange and compression stroke events was done for both HCCI-generating approaches.
Technical Paper

Low Soot, Low NOx in a Heavy Duty Diesel Engine Using High Levels of EGR

2005-10-24
2005-01-3836
The objective of the study presented here was to examine the possibility of simultaneously reducing soot and nitrogen oxide (NOx) emissions from a heavy duty diesel engine, using very high levels of EGR (exhaust gas recirculation). The investigation was carried out using a 2 litre DI single cylinder diesel engine. Two different EGR strategies were examined. One entailed maintaining a constant charge air pressure with a varied exhaust back pressure in order to change the amount of EGR. In the other strategy a constant pressure difference was maintained over the engine, resulting in different equivalence ratios at similar EGR levels. EGR levels of 60 % or more significantly reduced both soot and NOx emissions at 25 % engine load with constant charge air pressure and increasing exhaust back pressure. However, combustion under these conditions was incomplete, resulting in high emissions of carbon monoxide (CO), unburned hydrocarbons (HC) and high fuel consumption.
X