Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Characterization of Internal flow and Spray of Multihole DI Gasoline Spray using X-ray Imaging and CFD

2011-08-30
2011-01-1881
Multi-hole DI injectors are being adopted in the advanced downsized DISI ICE powertrain in the automotive industry worldwide because of their robustness and cost-performance. Although their injector design and spray resembles those of DI diesel injectors, there are many basic but distinct differences due to different injection pressure and fuel properties, the sac design, lower L/D aspect ratios in the nozzle hole, closer spray-to-spray angle and hense interactions. This paper used Phase-Contrast X ray techniques to visualize the spray near a 3-hole DI gasoline research model injector exit and compared to the visible light visualization and the internal flow predictions using with multi-dimensional multi-phase CFD simulations. The results show that strong interactions of the vortex strings, cavitation, and turbulence in and near the nozzles make the multi-phase turbulent flow very complicated and dominate the near nozzle breakup mechanisms quite unlike those of diesel injections.
Technical Paper

Diesel Spray Development of VCO Nozzles for High Pressure Direct-Injection

2000-03-06
2000-01-1254
Spray characteristics of diesel fuel injection is one of the most important factors in diesel combustion and pollutant emissions especially in HSDI (High Speed Direct Injection) diesel engines where the interval between the evaporation of atomized fuel and the onset of combustion is relatively short. An investigation into various spray characteristics from different holes of VCO nozzles was performed and its results were compared to standard sac nozzle. The global characteristics of spray, including spray angle, spray tip penetration, and spray pattern were measured from the spray images which were frozen by an instantaneous photography with a spark light source. For better understanding of spray behavior, SMD of the fuel sprays from each hole in the multi hole nozzles were measured with back light imaging while the sprays from the other holes were covered by a purpose-built nozzle cap.
Technical Paper

Effect of Injector Nozzle Hole Geometry on Particulate Emissions in a Downsized Direct Injection Gasoline Engine

2017-09-04
2017-24-0111
In this study, the effect of the nozzle tip geometry on the nozzle tip wetting and particulate emissions was investigated. Various designs for the injector nozzle hole were newly developed for this study, focusing on the step hole geometry to reduce the nozzle tip wetting. The laser induced fluorescence technique was applied to evaluate the fuel wetting on the nozzle tip. A vehicle test and an emissions measurement in a Chassi-Dynamo were performed to investigate the particulate emission characteristics for injector nozzle designs. In addition, the in-cylinder combustion light signal measurement by the optical fiber sensor was conducted to observe diffusion combustion behavior during the vehicle test. Results showed that the step hole surface area is strongly related to nozzle tip wetting and particulate emissions characteristics. Injectors without the step hole and with a smaller step hole geometry showed significant reduction of nozzle tip wetting and number of particulate emissions.
Technical Paper

Effect of Nozzle Geometry on the Common-Rail Diesel Spray

2002-05-06
2002-01-1625
Diesel injections with various nozzle geometries were tested to investigate the spray characteristics by optical imaging techniques. Sac-nozzle and VCO nozzle with single guided needle coupled with rotary-type mechanical pump were compared in terms of macroscopic spray development and microscopic behavior. These nozzles incorporated with common-rail system were tested to see the effect of high pressure injection. Detailed investigation into spray characteristics from the holes of VCO nozzles, mostly with double guided needle, was performed. A variety of injection hole geometries were tested and compared to give tips on better injector design. Different hole sizes and taper ratio, represented as K factor, were studied through comprehensive spray imaging techniques. Global characteristics of a diesel spray, such as spray penetration, spray angle and its pattern, were observed from macroscopic images.
Journal Article

Effects of Cavitation and Hydraulic Flip in 3-Hole GDI Injectors

2017-03-28
2017-01-0848
The performance of Gasoline Direct Injection (GDI) engines is governed by multiple physical processes such as the internal nozzle flow and the mixing of the liquid stream with the gaseous ambient environment. A detailed knowledge of these processes even for complex injectors is very important for improving the design and performance of combustion engines all the way to pollutant formation and emissions. However, many processes are still not completely understood, which is partly caused by their restricted experimental accessibility. Thus, high-fidelity simulations can be helpful to obtain further understanding of GDI injectors. In this work, advanced simulation and experimental methods are combined in order to study the spray characteristics of two different 3-hole GDI injectors.
Technical Paper

Entrainment, Evaporation and Mixing Characteristics of Diesel Sprays around End-of-Injection

2009-04-20
2009-01-0849
In this study, air entrainment, fuel evaporation and mixing process of diesel sprays injected by micro-orifices for direct-injection diesel engines were investigated at the end of injection transient and after the end of injection. The mixture formation process was analyzed using a laser absorption scattering (LAS) technique, providing the information of quantified liquid and vapor mass concentration, entrained air concentration and equivalence ratio. The data was obtained at the timings of quasi-steady state, sudden velocity decrease, the end of injection and after the end of injection. Two micro-orifices, which have different orifice diameters, were selected as test nozzles to investigate the end-of-injection characteristics at different nozzle geometries. In case of smaller orifice diameter, the liquid phase regression was observed around the end of injection, while it was not observed at larger orifice diameter due to denser liquid concentration near the nozzle tip.
Technical Paper

Generation of Robust and Well-Atomized Swirl Spray

2007-07-23
2007-01-1852
The spray characteristics of a swirl injector for direct-injection spark-ignition (DISI) engines were investigated for the generation of robust and well-atomized swirl spray. A highly-inclined tapered nozzle is applied as a test nozzle and the spray characteristics are compared with conventional nozzle and L-step nozzle. When the taper angle is 70°, an opened hollow cone spray is formed. This spray does not collapse with increasing fuel temperature and back pressure conditions. However, the taper angle should be optimized to avoid forming a locally rich area and to increase the spray volume. The droplet size of 70° tapered nozzle spray shows a value similar to that of the original swirl spray in the horizontal mainstream while it shows an increased value in the vertical mainstream. The deteriorated atomization characteristics of the tapered nozzle spray are improved by applying high fuel temperature injection without causing spray collapse.
Technical Paper

Hydraulic Simulation and Experimental Analysis of Needle Response and Controlled Injection Rate Shape Characteristics in a Piezo-driven Diesel Injector

2006-04-03
2006-01-1119
The More precise control of the multiple-injection is required in common-rail injection system of direct injection diesel engine to meet the low NOx emission and optimal PM filter system. The main parameter for obtaining the multiple-injections is the mechanism controlling the injector needle energizing and movement. In this study, a piezo-driven diesel injector, as a new method driven by piezoelectric energy, has been applied with a purpose to develop the analysis model of the piezo actuator to predict the dynamics characteristics of the hydraulic component (injector) by using the AMESim code and to evaluate the effect of this control capability on spray formation processes. Aimed at simulating the hydraulic behavior of the piezo-driven injector, the circuit model has been developed and verified by comparison with the experimental results.
Journal Article

Ignition and Combustion Characteristics of Wall-Impinging Sprays Injected by Group-Hole Nozzles for Direct-Injection Diesel Engines

2008-10-06
2008-01-2469
The concept of two closely spaced micro-orifices (group hole nozzle) has been studied as a promising technology for the reduction of soot emission from direct injection (DI) diesel engines by improving the fuel atomization and evaporation. One of the main issues on group hole nozzle is the arrangement of orifices with various distances and angles. In this study, the ignition and combustion characteristics of wall-impinging diesel sprays from group-hole nozzles were investigated with various angles between two micro-orifices (included angles). A laser absorption scattering (LAS) technique for non-axisymmetric sprays, developed based on a LAS technique for axisymmetric spray, was applied to investigate the liquid/vapor mass distribution of wall-impinging sprays. The direct flame images and OH radical images inside a high pressure constant volume vessel were captured to analyze the effect of included angle on spray ignition and combustion characteristics.
Technical Paper

Influence of the Injector Geometry at 250 MPa Injection in a Light-Duty Diesel Engine

2017-03-28
2017-01-0693
This paper investigated the influence of the injector nozzle geometry on fuel consumption and exhaust emission characteristics of a light-duty diesel engine with 250 MPa injection. The engine used for the experiment was the 0.4L single-cylinder compression ignition engine. The diesel fuel injection equipment was operated under 250MPa injection pressure. Three injectors with nozzle hole number of 8 to 10 were compared. As the nozzle number of the injector increased, the orifice diameter decreased 105 μm to 95 μm. The ignition delay was shorter with larger nozzle number and smaller orifice diameter. Without EGR, the particulate matter(PM) emission was lower with larger nozzle hole number. This result shows that the atomization of the fuel was improved with the smaller orifice diameter and the fuel spray area was kept same with larger nozzle number. However, the NOx-PM trade-offs of three injectors were similar at higher EGR rate and higher injection pressure.
Technical Paper

Performance of Prototype High Pressure Swirl Injector Nozzles for Gasoline Direct Injection

1999-10-25
1999-01-3654
Prototype intermittent swirl-generating nozzles for gasoline direct injection application were fabricated by modifying MPI injector nozzles. Design parameters include geometric configuration of nozzle internal flow passage such as orifice diameter and length, needle geometry and swirler passage designs. Operating parameters are considered such as injection pressure, ambient pressure, injected fuel mass and duration of injector opening. Performances of the nozzles have been characterized in terms of static and transient flow rate, initial and overall spray angle, penetration, mean droplet diameter and drop size distribution. Computational fluid dynamic modeling of internal flow for the nozzles provided additional insight in addition to the experimental measurements. Sprays from the prototype nozzle used for measurement in this study exhibited the general features of swirl injection sprays.
X