Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

(R)evolution of E/E Architectures

2015-04-14
2015-01-0196
This paper presents an overview of the evolution & revolution of automotive E/E architectures and how we at Bosch, envision the technology in the future. It provides information on the bottlenecks for current E/E architectures and drivers for their evolution. Functionalities such as automated driving, connectivity and cyber-security have gained increasing importance over the past few years. The importance of these functionalities will continue to grow as these cutting-edge technologies mature and market acceptance increases. Implementation of these functionalities in mainstream vehicles will demand a paradigm shift in E/E architectures with respect to in-vehicle communication networks, power networks, connectivity, safety and security. This paper expounds on these points at a system level.
Technical Paper

04 Emission Reduction by Cylinder Wall Injection in 2-Stroke S.I. Engines

2002-10-29
2002-32-1773
A direct injection system in which fuel was injected through the cylinder wall was developed and detailed investigation was made for the purpose of reducing short-circuit of fuel in 2-stroke engines. As a result of dynamo tests using 430cc single cylinder engine, it was found that the injector was best attached at a location as close to TDC as possible on the rear transfer port side, and that the entire amount of fuel should be injected towards the piston top surface. Emissions were worsened if fuel was injected towards the exhaust port or spark plug. Although the higher injection pressure resulted in large emissions reduction effects, it did not have a significant effect on fuel consumption. When a butterfly exhaust valve, known to be effective against irregular combustion in the light load range, was applied, it was found to lead to further reductions in HC emission and fuel consumption while also improving combustion stability.
Technical Paper

1-D Numerical Model of a Spark Ignition Engine Fueled with Methanol for Off-Grid Charging Stations

2023-08-28
2023-24-0098
The road transportation sector is undergoing significant changes, and new green scenarios for sustainable mobility are being proposed. In this context, a diversification of the vehicles’ propulsion, based on electric powertrains and/or alternative fuels and technological improvements of the electric vehicles charging stations, are necessary to reduce greenhouse gas emissions. The adoption of internal combustion engines operating with alternative fuels, like methanol, may represent a viable solution for overcoming the limitations of actual grid connected charging infrastructure, giving the possibility to realize off-grid charging stations. This work aims, therefore, at investigating this last aspect, by evaluating the performance of an internal combustion engine fueled with methanol for stationary applications, in order to fulfill the potential demand of an on off-grid charging station.
Technical Paper

100% LPG Long Haul Truck Conversion - Economy and Environmental Benefits

2012-09-24
2012-01-1983
Advanced Vehicle Technologies (AVT), a Ballarat Australia based company, has developed the World's first diesel to 100% LPG conversion for heavy haul trucks. There is no diesel required or utilized on the trucks. The engine is converted with minimal changes into a spark ignition engine with equivalent power and torque of the diesel. The patented technology is now deployed in 2 Mercedes Actros trucks. The power output in engine dynamometer testing exceeds that of the diesel (in excess of 370 kW power and 2700 Nm torque). In on-road application the power curve is matched to the diesel specifications to avoid potential downstream power-train stress. Testing at the Department of Transport Energy & Infrastructure, Regency Park, SA have shown the Euro 3 truck converted to LPG is between Euro 4 and Euro 5 NOx levels, CO2 levels 10% better than diesel on DT80 test and about even with diesel on CUEDC tests.
Technical Paper

100-kWe Lunar/Mars Surface Power Utilizing the SP-100 Reactor with Dynamic Conversion

1992-08-03
929446
An integration study was performed coupling an SP-100 reactor with either a Brayton or Stirling power conversion subsystem. A power level of 100 kWe was selected for the study. The power system was to be compatible with both the lunar and Mars surface environment and require no site preparation. In addition, the reactor was to have integral shielding and be completely self-contained, including its own auxiliary power for start-up. Initial reliability studies were performed to determine power conversion redundancy and engine module size. Previous studies were used to select the power conversion optimum operating conditions (ratio of hot-side temperature to cold-side temperature). Results of the study indicated that either the Brayton or Stirling power conversion subsystems could be integrated with the SP-100 reactor for either a lunar or Mars surface power application.
Technical Paper

14/42V - Electrical Power Supply Systems Consequences for Electrical Interconnections and Switches

2000-08-21
2000-01-3055
This paper provides an overview about the consequences of a 14/42 V - Electrical Power Supply System for the Electrical Interconnection and Switching Technology. It presents design guidelines and solutions for connector systems including advanced applications like fuse and relay boxes and gives an overview of those existing connectors already suited for 42 V and even higher voltages. The problem of arcing due to the increased voltage is discussed for the case that mating and unmating under load has to be taken into consideration. Arcing also has a tremendous impact on the design of 42 V proof relays. Therefore, some basic results be presented along with proposals how these problems can be overcome by appropriate designs. Another part of the paper looks at the electrical power supply system itself. Here interconnection techniques for new battery systems are discussed. Finally, the chances for new technologies are highlighted.
Technical Paper

18 Gasoline CAI and Diesel HCCI: the Way towards Zero Emission with Major Engine and Fuel Technology Challenges

2002-10-29
2002-32-1787
Engines and fuels for transport as well as off-road applications are facing a double challenge: bring local pollution to the level requested by the most stringent city air quality standard reduce CO2 emission in order to minimize the global warming risk. These goals stimulate new developments both of conventional and alternative engines and fuels technologies. New combustion processes known as Controlled Auto-Ignition (CAI™) for gasoline engine and Homogeneous Charge Compression Ignition (HCCI) for Diesel engine are the subject of extensive research world wide and particularly at IFP for various applications such as passenger cars, heavy-duty trucks and buses as well as small engines. Because of the thermo-chemistry of the charge, the thermal NOx formation and the soot production are in principle much lower than in flames typical of conventional engines.
Technical Paper

1963 Pure Oil Performance Trials

1963-01-01
630280
Background of the Pure Oil performance trials on six classes of automobiles is presented and the evolution of test requirements described. Three tests are run: the economy test to establish how far a vehicle can go over a prescribed course on one gallon of gasoline; the acceleration test which determines acceleration time from 25 to 70 mph in seconds; and the braking test where stopping distance in feet is measured for a stop from 60 mph. Each test is described from the point of view of rules, recording instruments, and penalties for infractions of rules. Test results are presented.
Technical Paper

1964 Pure Oil Performance Trials

1964-01-01
640476
A review of the Pure Oil Performance Trials conducted at Daytona International Speedway are presented. Background information pertaining to conducting of tests, design of the equipment, and instrumentation required for the various events are discussed. The performance trials have evolved into three basic tests -- Economy, Acceleration, and Braking. The objective of the Performance Trials is to provide data that motorists can utilize in evaluating new cars and selecting new models.
Technical Paper

2005 Ford GT Electrical & Electronics

2004-03-08
2004-01-1259
The Ford GT Program Team was allocated just 22 months from concept to production to complete the Electrical and Electronics systems of the Ford GT. This reduced vehicle program timing - unlike any other in Ford's history -- demanded that the team streamline the standard development process, which is typically 54 months. This aggressive schedule allowed only 12 weeks to design the entire electrical and electronic system architecture, route the wire harnesses, package the components, and manufacture and/or procure all components necessary for the first three-vehicle prototype build.
Technical Paper

2006 Chevrolet Corvette C6 Z06 Aerodynamic Development

2005-04-11
2005-01-1943
This paper is intended to give a general overview of the key aerodynamic developments for the 2006 Chevrolet Corvette C6 Z06. Significant computational and wind tunnel time were used to develop the 2006 Z06 to provide it with improved high speed stability, increased cooling capability and equivalent drag compared to the 2004 Chevrolet Corvette C5 Z06.
Technical Paper

2013 SRT Viper Carbon Fiber X-Brace

2013-04-08
2013-01-1775
The 2013 SRT Viper Carbon Fiber X-Brace, styled by Chrysler's Product Design Office (PDO), is as much of a work of art as it is an engineered structural component. Presented in this paper is the design evolution, development and performance refinement of the composite X-Brace (shown in Figure 1). The single-piece, all Carbon Fiber Reinforced Plastic (CFRP) X-Brace, an important structural component of the body system, was developed from lightweight carbon fiber material to maximize weight reduction and meet performance targets. The development process was driven extensively by virtual engineering, which applied CAE analysis and results to drive the design and improve the design efficiency. Topology optimization and section optimization were used to generate the initial design's shape, form and profile, while respecting the package requirements of the engine compartment.
Technical Paper

25W HID Headlamp - First Series Production in Hybrid Vehicle

2011-04-12
2011-01-0108
Due to the general requirements in the automotive industry to reduce the power consumption, fuel consumption rate and CO2 emission a new HID (High Intensity Discharge) bulb with only 25W is under development for front lighting systems. A first headlamp integrated in a hybrid vehicle is now launched as a first application in the market. The current regulation in ECE allows to get rid of the mandatory headlamp cleaning system and the automatic leveling requirement once the 25W HID bulb is applied. The reason for this is the objective luminous flux of the 25W HID bulb, which emits less than 2000 lm, a boundary defined in the regulation, where a headlamp cleaning and an automatic leveling is requested. That simplifies especially the integration in smaller vehicles and electric and hybrid vehicles. The paper describes the special design of the headlamp, the projector unit, the light performance, packaging advantages and future outlook of further applications in the near future.
Technical Paper

270-Vdc/Hybrid 115-Vac Electric Power Generating System Technology Demonstrator Evolution to a Dual-Channel, More Electric Aircraft Technology Development Testbed

1991-09-01
912183
Sundstrand has been investigating 270-Vdc/hybrid 115-Vac electrical power generating systems (EPGS) technology in preparation for meeting the electrical power generating system (EPGS) requirements for future aircraft (1). Systems such as the one being investigated are likely to be suitable for the More-Electric Aircraft (MEA) concepts presently under industry and military study. The present Sundstrand single-channel testbed is being further expanded to better understand the electrical system performance characteristics and power quality requirements of an MEA in which traditional mechanical subsystems are replaced by those of a “more-electric” nature. This paper presents the most recent Sundstrand 270-Vdc system transient performance data, and describes the modifications being made to the 270-Vdc/hybrid 115-Vac testbed.
Technical Paper

3-D Modeling of Conventional and HCCI Combustion Diesel Engines

2004-10-25
2004-01-2964
An investigation of the possibility to extend the 3-dimensional modeling capabilities from conventional diesel to the HCCI combustion mode simulation was carried out. Experimental data was taken from a single cylinder engine operating with early injections for the HCCI and a split-injection (early pilot+main) for the high speed Diesel engine operation. To properly phase the HCCI mode in the experiments, high amounts of cooled EGR and a decreased compression ratio were used. In numerical simulation performed using KIVA3-V code, modified to incorporate the Detailed Chemistry Approach the same conditions were reproduced. Special attention is paid on the analysis of the events leading up to the auto-ignition, which was reasonably well predicted.
Technical Paper

38 Development of Compound-Laser Welding Method for Aluminum-Alloy Structure of Motorcycles

2002-10-29
2002-32-1807
A compound-laser welding method has been developed for the rapid three-dimensional welding of motorcycle aluminum-alloy structural parts. The term “compound-laser welding” means a high-speed welding method in which a number of lasers with different characteristics are arranged on the same axis. This paper reports the results of welding by a compound laser consisting of a YAG laser and a CO2 laser. It was found that compound-laser welding with two or more types of gases mixed as shielding gas gives a better welding performance than single-laser welding due to the advantages of the different lasers used in compound-laser welding.
Technical Paper

3D Numerical Simulation of Fuel injection and Combustion Phenomena in DI Diesel Engines

1989-02-01
890668
Recently the analysis of air-fuel mixing and combustion has become important under the stringent emissions regulations of diesel engines. In the case of gasoline engines, the KIVA computer program has been developed and used for the analysis of combustion. In this paper, the calculations of combustion phenomena in DI diesel engines are performed by modifying the KIVA program so as to be applicable to multi-hole nozzles and arbitrary patterns of injection rate. The thermophysical and ther-mochemical properties of gasoline are altered to those diesel fuel. In order to investigate the ability of this modified program, the calculations are compared with the experiments on single cylinder engines concerning the pressure, flame temperature and mass change of chemical species in cylinders. Furthermore, the calculation for the heavy duty DI diesel engine is performed with this diesel combustion program.
Journal Article

3D-CFD RANS Methodology to Predict Engine-Out Emissions with Gasoline-Like Fuel and Methanol for a DISI Engine

2022-09-16
2022-24-0038
Renewable fuels, such as bio- and e-fuels, are of great interest for the defossilization of the transport sector. Among these fuels, methanol represents a promising candidate for emission reduction and efficiency increase due to its very high knock resistance and its production pathway as e-fuel. In general, reliable simulation tools are mandatory for evaluating a specific fuel potential and optimizing combustion systems. In this work, a previously presented methodology (Esposito et al., Energies, 2020) has been refined and applied to a different engine and different fuels. Experimental data measured with a single cylinder engine (SCE) are used to validate RANS 3D-CFD simulations of gaseous engine-out emissions. The RANS 3D-CFD model has been used for operation with a toluene reference fuel (TRF) gasoline surrogate and methanol. Varying operating conditions with exhaust gas recirculation (EGR) and air dilution are considered for the two fuels.
Technical Paper

3M Approach to Implementing Life Cycle Management

2000-03-06
2000-01-0594
3M is committed to continuously improving products and their manufacture toward the goal of sustainability. The 3M Life Cycle Management (LCM) program has been established to implement this goal. It utilizes a matrix tool to facilitate the review. The matrix consists of LCM Stage (Material Acquisition, R&D Operations, Manufacturing Operations, and Customer Use/Disposal) and Impact (Environment, Health, Safety, and Energy/Resources). The program is coordinated at the staff level by the Corporate Product Responsibility group. The corporate goal is to apply LCM to all new and existing products. The LCM program started with evaluations of new products within business units. Since 3M produces more than 60,000 products manufactured from more than 10,000 different raw materials, the routine evaluation of individual products challenges available staff and business unit resources. A technology-based approach for doing LCMs has been implemented to meet the challenge.
X