Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

An Examination of the Combustion Processes of a Methane Fuelled Engine When Employing Plasma Jet Ignition

1989-08-01
891639
Examination is made of the changes that take place in the major parameters of the combustion process and engine performance when using three different designs of plasma jet igniters of the open cavity type in a methane fuelled single cylinder engine. The characteristics of the combustion process were analysed employing a two-zone diagnostic model based on cylinder pressure-time development data. The use of plasma jet igniters with methane as a fuel enhanced the rates of burning in the initial stages of combustion, especially with very lean mixtures. The lean limit of engine operation was also extended. Their use for near stoichiometric fast burning mixtures tends in comparison to contribute little towards enhancing engine performance.
Technical Paper

Methane-Carbon Dioxide Mixtures as a Fuel

1992-08-01
921557
The presence of carbon dioxide with methane is often encountered to varying proportions in numerous natural, industrial and bio-gases. The paper discusses how such a presence modifies significantly the thermodynamic, kinetic and combustion characteristics of methane in air. Experimental results are presented showing how the performance of engines, both of the spark ignition and compression ignition dual fuel types is adversely affected by the increasing presence of carbon dioxide with the methane. The bases for these trends are discussed and some guidelines towards alleviating the adverse effects of the presence of carbon dioxide in such fuel mixtures are made.
Technical Paper

Some Considerations of Cyclic Variations in Spark Ignition Engines Fuelled with Gaseous Fuels

1984-02-01
840232
Cyclic variations in engines have been the subject of much investigation and there are some excellent reviews of this research. However, there is still a need to examine in an integrated manner the cyclic variation in performance parameters such as indicated power output, efficiency and cylinder pressure development in relation to the cyclic variation in some important combustion parameters notably those of the ignition lag, which is the time requirements to initiate a flame kernel following the passage of a spark and the duration to complete the combustion process particularly when gaseous fuels, notably methane are used. The paper describes the results of an investigation with these objectives using a single cylinder, variable compression ratio, spark ignition, CFR engine, run at constant speed, operating mainly on natural gas.
Technical Paper

The Combustion of Gaseous Fuels in a Dual Fuel Engine of the Compression Ignition Type with Particular Reference to Cold Intake Temperature Conditions

1980-02-01
800263
The present contribution is mainly concerned with an investigation of the characteristics of dual fuel operation under cold intake temperatures, primarily from the viewpoint of engine performance and exhaust emissions. The gaseous fuels employed were methane, propane, hydrogen and ethylene. The addition of the inerts carbon dioxide and nitrogen were also considered. Comparison with the corresponding normal diesel operation was made throughout.
Technical Paper

The Effects of Pilot Fuel Quality on Dual Fuel Engine Ignition Delay

1998-10-19
982453
The effects of changes in the cetane number of diesel liquid pilot fuels on the ignition delay period in dual fuel engines were investigated experimentally. Different pilot fuel quantities were employed with commercially pure methane, propane and low heating value gaseous fuel mixtures of methane with nitrogen or carbon dioxide over a range of engine load. The ignition delay variation with increased gaseous fuel admission showed a strong dependance on both the quantity and the quality of the pilot fuel used. It was found that the use of high cetane number pilot liquid fuels permitted smaller pilot quantities to be used satisfactorily. Engine operation on propane and low heating value gaseous fuels improved in comparison with dual fuel engine operation employing common diesel fuels.
Technical Paper

The Ignition of a Premixed Fuel and Air Charge by Pilot Fuel Spray Injection with Reference to Dual-Fuel Combustion

1968-02-01
680768
Dual fuel engines compress the air/gas fuel mixture to just below autoignition conditions and then ignite it by the injection of a small amount of liquid fuel. The use and performance of these engines, however, have been limited by knock. Single cylinder engine experiments show that this limitation is a readily defined autoignition phenomenon, and can be analyzed by a mathematical model that indicates the effects on performance imposed by fuel changes and operating conditions. Experimental findings confirm that these performance data correlate broadly with those obtained conventionally in standard spark ignited or motored engines.
X