Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

A Multibody Model for Riderless Bicycle Dynamics Considering Tire Characteristics

2023-04-11
2023-01-0783
A multibody model for riderless bicycle dynamics considering tire characteristics is presented. A riderless bicycle is regarded as a multibody system consisting of four rigid bodies: rear wheel, frame, front fork, and front wheel. Every two bodies are connected with a revolute joint. The mass center coordinates and Euler angles of the rigid bodies are used as the generalized coordinates to describe their positions and orientations. The system equations of motion are obtained using Lagrange equations of the first kind. Due to the existence of the three revolute constraints and the use of dependent generalized coordinates, the Lagrange multipliers are employed to account for revolute reaction forces. As for the contact between the wheel and the ground, many studies regarded the wheel as a rigid body with a knife edge, which lead to the nonholonomic constraints between the wheel and the ground.
Technical Paper

A Path Tracking Method for an Unmanned Bicycle Based on the Body-Fixed Coordinate Frame

2024-04-09
2024-01-2303
The present study introduces a novel approach for achieving path tracking of an unmanned bicycle in its local body-fixed coordinate frame. A bicycle is generally recognized as a multibody system consisting of four distinct rigid bodies, namely the front wheel, the front fork, the body frame, and the rear wheel. In contrast to most previous studies, the relationship between a tire and the road is now considered in terms of tire forces rather than nonholonomic constraints. The body frame has six degrees of freedom, while the rear wheel and front fork each have one degree of freedom relative to the body frame. The front wheel exhibits a single degree of freedom relative to the front fork. A bicycle has a total of nine degrees of freedom.
Technical Paper

A Polynomial Chaos- Based Likelihood Approach for Parameter Estimation of Load Sensing Proportional Valve

2013-04-08
2013-01-0948
As there are a variety of uncertainty contained in dynamic systems, this paper presents a method to identify the uncertain parameters of Load Sensing Proportional Valve in a heavy truck brake system. This method is derived from polynomial chaos theory and uses the maximum likelihood approach to estimate the most likely value of uncertain parameters, such as equivalent bearing area diameter of the diaphragm, preload of return spring and so on. The maximum likelihood estimates are obtained through minimizing the cost function derived from the prior probability for the measurement noise. Direct stochastic collocation has been shown to be more efficient than Galerkin approach in the simulation of systems with large number of uncertain parameters. The simulation model of Load Sensing Proportional Valve is built in software AMESim based on logic structure of the valve. The uncertain parameters are estimated through the simulation results which are treated as measurements.
Journal Article

A Polynomial Chaos-Based Method for Recursive Maximum Likelihood Parameter Estimation of Load Sensing Proportional Valve

2014-04-01
2014-01-0721
In this paper, a new computational method is provided to identify the uncertain parameters of Load Sensing Proportional Valve (LSPV) in a heavy truck brake system by using the polynomial chaos theory. The simulation model of LSPV is built in the software AMESim depending on structure of the valve, and the estimation process is implemented relying on the experimental measurements by pneumatic bench test. With the polynomial chaos expansion carried out by collocation method, the output observation function of the nonlinear pneumatic model can be transformed into a linear and time-invariant form, and the general recursive functions based on Newton method can therefore be reformulated to fit for the computer programming and calculation. To improve the estimation accuracy, the Newton method is modified with reference to Simulated Annealing algorithm by introducing the Metropolis Principle to control the fluctuation during the estimation process and escape from the local minima.
Journal Article

Modeling, Experimentation and Sensitivity Analysis of a Pneumatic Brake System in Commercial Vehicles

2014-04-01
2014-01-0295
The main purpose of this research is to investigate the optimal design of pipeline diameter in an air brake system in order to reduce the response time for driving safety using DOE (Design of Experiment) method. To achieve this purpose, this paper presents the development and validation of a computer-aided analytical dynamic model of a pneumatic brake system in commercial vehicles. The brake system includes the subsystems for brake pedal, treadle valve, quick release valve, load sensing proportional valve and brake chamber, and the simulation models for individual components of the brake system are established within the multi-domain physical modeling software- AMESim based on the logic structure. An experimental test bench was set up by connecting each component with the nylon pipelines based on the actual layout of the 4×2 commercial vehicle air brake system.
Technical Paper

On-Board Estimation of Road Adhesion Coefficient Based on ANFIS and UKF

2022-03-29
2022-01-0297
The road adhesion coefficient has a great impact on the performance of vehicle tires, which in turn affects vehicle safety and stability. A low coefficient of adhesion can significantly reduce the tire's traction limit. Therefore, the measurement of the coefficient is much helpful for automated vehicle control and stability control. Considering that the road adhesion coefficient is an inherent parameter of the road and it cannot be known directly from the information of the on-vehicle sensors. The novelty of this paper is to construct a road adhesion coefficient observer which considers the noise of sensors and measures the unknown state variable by the trained neural network. A Butterworth filter and Adaptive Neural Fuzzy Interference System (ANFIS) are combined to provide the lateral and longitudinal velocity which cannot be measured by regular sensors.
Journal Article

Road-Feeling Simulation of SBW System Based on Kalman Filter Fusion Estimation

2023-04-11
2023-01-0779
Due to the elimination of the mechanical connection between the steering column and steering gear in the Steer-by-Wire (SBW) system, the road-feeling simulation is mainly supplied by the road-feeling motor which loads a drag torque on the steering wheel rather than the actual torque transmitted from the road. To obtain more realistic steering wheel torque, a novel feedback torque of the road-feeling motor fusion estimation method based on the Kalman filter is presented in this paper. Firstly, the model-based estimation method is utilized to estimate the aligning torque between tires and ground which is converted into the rack force through the steering system. Then the estimated rack force is used as the observed data for the Kalman Filter of the sensor-based method and the Kalman Filter-based fusion estimation method is resulted, through which the more realistic feedback torque of the road-feeling motor can be obtained.
Technical Paper

Robust Design of Load Sensing Proportional Valve by Orthogonal Experiment Analysis with Constrained Multi-objective Genetic Algorithm

2013-04-08
2013-01-0378
This paper deals with the robust design of the Load Sensing Proportional Valve (LSPV). To find out the parameters which have main effect on the performance of the LSPV, the DOE based on orthogonal experiment is carried out utilizing the LSPV model built in AMESim environment. In order to save computation expense, the RSM technique is used to approximate the optimal objectives and constraints. Then a robust design methodology using multi-objective evolutionary algorithm (MOEA) is performed and a set of non-dominated solutions are therefore obtained. With specified assessments, feasible solutions can therefore be selected from the entire field of the Pareto optimal solutions. The validation is made by Monte Carlo Simulation Technique in terms of the robustness of the feasible solutions.
Technical Paper

Semi-Active Control of ISD In-Wheel Motors Suspension with Dynamic Vibration Absorber

2022-03-29
2022-01-0285
Electric vehicles driven by in-wheel-motor have the advantages of compact structure and high transmission efficiency, which is one of the most ideal energy-saving, environmentally friendly, and safe driving forms in the future. However, the addition of the in-wheel-motor significantly increases the unsprung mass of the vehicle, resulting in a decrease in the mass ratio of the vehicle body to the wheel, which will deteriorate the ride comfort and safety of the vehicle. To improve the vibration performance of in-wheel-motor driven vehicles, a semi-active inerter-spring-damper (ISD) suspension with in-wheel-motor (IWM) dynamic vibration absorber (DVA) of the electric wheel is proposed in this paper. Firstly, a structure of in-wheel-motor DVA is proposed, which converts the motor into a dynamic vibration absorber of the wheel to suppress the vibration of the unsprung mass.
X