Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

A Study of Vehicle Class Segregation Using Linear Handling Models

1995-02-01
950307
The handling, stability, and rollover resistance of vehicles is presently being studied by both the automotive industry and the National Highway and Traffic Safety Administration (NHTSA). However, to study the handling and rollover behavior of each vehicle on the road is not feasible. The ability to categorize and compare the rollover and handling behavior of various vehicles is a subject of considerable research interest. This paper examines the possibility of characterizing vehicle classes through the use of a three degree-of-freedom linear model. Initially, segregation is studied by evaluating the eigenvalue location in the complex domain for vehicle sideslip velocity, yaw rate, and roll angle. Then the influence of numerator dynamics on vehicle behavior is studied and vehicle class segregation is attempted through evaluation of the amplitude ratio of the frequency responses for sideslip velocity, yaw rate, and roll angle.
Technical Paper

An Analysis of Yaw Inducing Drag Forces Imparted During Tire Tread Belt Detachments

2007-04-16
2007-01-0836
In this study, tests were performed to understand the effects of asymmetric longitudinal forces on vehicle response which may be created in certain staged partial tire tread belt detachment tests. In a very small number of tests performed by others, tires cut to simulate partial tire tread belt detachments created longitudinal drag forces at the separating tire that induced substantial vehicle yaw. This drag force and yaw response are independent of vehicle type and suspension type; they are created by the separating tire tread interacting with the road surface and / or vehicle. Similar yaw inducing drag forces are further demonstrated by applying braking to only the right rear wheel location of an instrumented test vehicle. It is shown that vehicle yaw response results from this longitudinal force as opposed to vertical axle motion.
Technical Paper

Comparative Dynamic Analysis of Tire Tread Belt Detachments and Stepped Diameter (“Lumpy”) Tires

2007-04-16
2007-01-0846
In this study, tests were performed with modified tires at the right rear location on a solid axle sport utility vehicle to compare vehicle inputs and responses from both: (1) staged tire tread belt detachments, and (2) stepped diameter (“lumpy”) tires. Lumpy tires consist of equal size sections of tread that are vulcanized at equidistant locations around the outer circumference of the tire casing. Some have used lumpy tires in attempt to model the force and displacement inputs created by a tire tread belt separation. Four configurations were evaluated for the lumpy tires: 1-Lump, 2-Lump (2 lengths), and 3-Lump.
Technical Paper

Repeatability and Bias Study on the Vehicle Inertia Measurement Facility (VIMF)

2009-04-20
2009-01-0447
Representative vehicle inertial characteristics are important parameters for the development of motor vehicles and the proper operation of on-board systems. The Vehicle Inertia Measurement Facility (VIMF) measures vehicle center of gravity location, principal moments of inertia, and the roll/yaw product of inertia. It is important to understand the VIMF’s accuracy and repeatability, as well as the underlying methodology and assumptions, when performing tests or using the results of the test. This study reports on a repeatability analysis performed at the lower and upper limits of the VIMF. Each test performed is a complete drive-on/drive-off test. The test sequence involves the repeatability evaluation of several different machine configurations. Ten complete tests are performed for each vehicle. To better address the possibility of measurement bias, the design and verification of a calibration fixture for inertial characteristics is presented.
Technical Paper

The Design of a Vehicle Inertia Measurement Facility

1995-02-01
950309
This paper describes the design of a vehicle inertia measurement facility (VIMF): a facility used to measure vehicle center of gravity position; vehicle roll, pitch, and yaw mass moments of inertia; and vehicle roll/yaw mass product of inertia. The rationale for general design decisions and the methods used to arrive at the decisions are discussed. The design is inspired by the desire to have minimal measurement error and short test time. The design was guided by analytical error analyses of the contributions of individual system errors to the overall measurement error. A National Highway Traffic Safety Administration (NHTSA) database of center of gravity position and mass moment of inertia data for over 300 vehicles was used in conjunction with the error analyses to design various VIMF components, such as the roll and yaw spring sizes.
Technical Paper

Vehicle Response Comparison to Tire Tread Separations Induced by Circumferentially Cut and Distressed Tires

2007-04-16
2007-01-0733
In this study, tests were performed with modified tires at the right rear location on a solid rear axle sport utility vehicle to compare the vehicle inputs from both: (1) tire tread belt detachments staged by circumferentially cut tires, and (2) a tire tread detachment staged by distressing a tire in a laboratory environment. The forces and moments that transfer through the road wheel were measured at the right and left rear wheel locations using wheel force transducers; displacements were measured between the rear axle and the frame at the shock absorber mounting locations, ride height displacements were measured at the four corners of the vehicle, and accelerations were measured on the rear axle. Onboard vehicle accelerations and velocities were measured as well. The data shows that the tire tread belt detachments prepared by circumferentially cut tires and distressed tires have similar inputs to the vehicle.
X