Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Impact Testing of Passenger Vehicle and Semi-Truck Pneumatic Tires and Rims

2023-04-11
2023-01-0625
Wheels and tires on vehicles, are often directly (or indirectly) involved in collisions with other vehicles or fixed objects. In this study, the effects of the pneumatic tire and rim, as it contributes to a dynamic collision, was isolated and studied. A total of 15 mounted tires of various common sizes were selected to conduct 35 dynamic impact tests into the flat face of an instrumented concrete barrier. The tires and rims used in the tests ranged from heavy truck, light truck, down to common passenger vehicle tires. Each of the 15 tires and rims were impact tested individually to failure in order to explore the dynamic response and performance of pneumatic tires in collisions. Of the 35 tests, 28 were conducted with a single tire and rim configuration and 7 tests were conducted simulating a dual truck tire configuration. It was determined that the coefficient of restitution for 22 of the tire impacts into the rigid flat faced barrier were remarkably similar, around 0.9 ± 0.1.
Technical Paper

Narrow Object Impact Analysis and Comparison with Flat Barrier Impacts

2002-03-04
2002-01-0552
Crash behavior in narrow object impacts was examined for the perimeter of a 4-door full size sedan. Additional test data was obtained for this vehicle by impacting four sedans with a rigid pole mounted to a massive moving barrier (MMB) in the front, right front oblique, right side, and rear. The vehicles were stationary when impacted by the MMB. Two of the four cars were repeatedly impacted with increasing closing speeds in the front and side, respectively. Each test was documented and the resulting deformation accurately measured. The stiffness characteristics were calculated for the perimeter of car and were presented using the power law damage analysis model. The vehicle's crash performance in these pole tests was compared to that of NHTSA's flat fixed barrier tests (deformable and non-deformable) for the front, side, and rear of this vehicle.
Technical Paper

Rear Override Impact Analysis of Full-Size and Light Duty Pickup Trucks for Crash Reconstruction

2017-03-28
2017-01-1423
The rear override crash behavior of full-size and light duty pickup trucks was examined. A series of ten full-scale, front and rear override impact crash tests were conducted involving four full-size pickup trucks, two light duty pickup trucks, and one sport utility vehicle (SUV). The tests were conducted utilizing a fabricated steel rigid barrier mounted on the front of the Massive Moving Barrier (MMB) test device with full overlap of the test vehicle. Crush ranged from 25.0 to 77.9 inches for impact speeds of 21.7 to 36.0 mph. These override tests on pickups were conducted to provide more basis in an area that is underrepresented in the literature. Each test was documented and measured prior to, and following, the crash test. The stiffness parameters were calculated and presented using constant stiffness, force saturation, and the power law damage models.
Technical Paper

Rollover Testing of Sport Utility Vehicles (SUVs) on an Actual Highway

2010-04-12
2010-01-0521
A follow-up study on rollover testing was conducted along a section of a remote rural highway using six full-size sport utility vehicles (SUVs) of differing makes and models. The vehicles were instrumented and towed to highway speeds before being released, at which point an automated steering controller steered the vehicles through a series of maneuvers intended to result in rollover. A total of eight tests were conducted and documented, six rollovers and two non-rollover events. The six rollover events provide trip and tumbling conditions for each vehicle. The two non-rollover attempts produced cornering tire marks and allowed for the documentation of near roll conditions for the two out-of-control vehicles. All eight tests presented are instrumented real-world type tests that were later correlated based upon the data obtained.
Technical Paper

Rollover Testing of a Sport Utility Vehicle (SUV) with an Inertial Measurement Unit (IMU)

2015-04-14
2015-01-1475
A follow-up case study on rollover testing with a single full-size sport utility vehicle (SUV) was conducted under controlled real-world conditions. The purpose of this study was to conduct a well-documented rollover event that could be utilized in evaluating various methods and techniques over the phases associated with rollover accidents. The phases documented and discussed, inherent to rollovers, are: pre-trip, trip, and rolling phases. With recent advances in technology, new devices and techniques have been designed which improve the ability to capture and document the unpredictable dynamic events surrounding vehicle rollovers. One such device is an inertial measurement unit (IMU), which utilizes GPS technology along with integrated sensors to report and record measured dynamic parameters real-time. The data obtained from a RT-4003 IMU device are presented and compared along with previous test data and methodology.
Journal Article

Rollover Testing on an Actual Highway

2009-04-20
2009-01-1544
Three full-size sedans were towed to highway speeds along a section of a remote rural highway. Upon release, an automated steering controller steered the vehicles through a series of maneuvers intended to result in rollover. Repeated attempts to roll each vehicle were made until rollover resulted. Non-rollover attempts produced cornering tire marks by the out-of-control vehicle. Out of numerous runs, 3 rollover and 2 non-rollover tests were selected for documentation and analysis. One additional steer-induced rollover test is presented that was conducted along a simulated road section at a closed test-track facility. All six tests presented are instrumented real-world type tests that were later reconstructed based upon the data obtained from on-board instrumentation, videotape, survey measurements, and still photographs obtained of each respective test.
X