Refine Your Search

Topic

Search Results

Technical Paper

A Failsafe Strategy for a Vehicle Dynamics Control (VDC) System

2004-03-08
2004-01-0190
The paper presents a failsafe strategy conceived for a Vehicle Dynamics Control (VDC) system developed by the Vehicle Dynamics Research Team of Politecnico di Torino. The main equations used by the failsafe algorithm are presented, especially those devoted to estimate steering wheel angle, body yaw rate and lateral acceleration, each of them fundamental to correctly actuate the VDC. The estimation is based on redundancy; each formula is considered according to a weight depending on the kind of maneuver. A new recovery algorithm is presented, which does not deactivate VDC after a sensor fault, but substitutes the sensor signal with the virtually estimated value. The results obtained through simulation are satisfactory. First experimental tests carried out on a ABS/VDC test bench of the Vehicle Dynamics Research Team of Politecnico di Torino confirmed the simulation results.
Technical Paper

A Methodology for Automotive Steel Wheel Life Assessment

2020-04-14
2020-01-1240
A methodology for an efficient failure prediction of automotive steel wheels during fatigue experimental tests is proposed. The strategy joins the CDTire simulative package effectiveness to a specific wheel finite element model in order to deeply monitor the stress distribution among the component to predict damage. The numerical model acts as a Software-in-the-loop and it is calibrated with experimental data. The developed tool, called VirtualWheel, can be applied for the optimisation of design reducing prototyping and experimental test costs in the development phase. In the first section, the failure criterion is selected. In the second one, the conversion of hardware test-rig into virtual model is described in detail by focusing on critical aspects of finite element modelling. In conclusion, failure prediction is compared with experimental test results.
Technical Paper

A Methodology for Parameter Estimation of Nonlinear Single Track Models from Multibody Full Vehicle Simulation

2021-04-06
2021-01-0336
In vehicle dynamics, simple and fast vehicle models are required, especially in the framework of real-time simulations and autonomous driving software. Therefore, a trade-off between accuracy and simulation speed must be pursued by selecting the appropriate level of detail and the corresponding simplifying assumptions based on the specific purpose of the simulation. The aim of this study is to develop a methodology for map and parameter estimation from multibody simulation results, to be used for simplified vehicle modelling focused on handling performance. In this paper, maneuvers, algorithms and results of the parameter estimation are reported, together with their integration in single track models with increasing complexity and fidelity. The agreement between the multibody model, used as reference, and four single track models is analyzed and discussed through the evaluation of the correlation index.
Technical Paper

A Methodology to Investigate the Dynamic Characteristics of ESP and EHB Hydraulic Units

2006-04-03
2006-01-1281
The paper deals with the Hardware-In-the-Loop based methodology which was adopted to evaluate the dynamic characteristics of Electronic Stability Program (ESP) and Electro-Hydraulic Brake (EHB) components. Firstly, it permits the identification of the time delays due to the hardware of the actuation system. Secondly, the link between the hardware of the hydraulic unit and a vehicle model running in real time permits the objective evaluation of the performance induced by the single components of different hydraulic units in terms of vehicle dynamics. The paper suggests the main parameters and tests which can help the car manufacturer in evaluating ESP hydraulic units, without expensive road tests.
Technical Paper

A Prototype Vehicle for Powertrain and Chassis Control System Tests

2011-06-09
2011-37-0028
A prototype vehicle (PV) is equipped to test powertrain and active chassis systems with innovative control strategies for safety and energy saving. Additional sensors installed on-board allow the measurement and estimation of new information useful to the vehicle dynamic control. The PV was based on a serial production passenger car with Electronic Stability Control (ESC). Testing activities on Controller Area Network (CAN) and ESC Electronic Control Unit (ECU) are carried out to compare the vehicle dynamic performance obtainable using serial production rather than customized control strategies, while maintaining the same hardware. The PV is also utilized to provide reverse engineering analysis about the implemented control strategy for the ESC working in serial production mode.
Technical Paper

Active Roll Control to Increase Handling and Comfort

2003-03-03
2003-01-0962
The paper deals with the elaboration of an Active Roll Control (ARC) oriented both on comfort and handling improvement. The ARC determines hydraulically the variation of the equivalent stiffness of the anti-roll bars. The control strategies conceived were extensively validated through road tests managed on an Alfa Romeo sedan. The first part of the paper deals with comfort improvement, mainly consisting in an absence of bar effect during straight-ahead travel and in a modification of the roll characteristic of the car. To increase driver's handling feeling, it was necessary to optimise the ratio between front and rear roll stiffness. This purpose can be reached through control strategies based exclusively on lateral acceleration. Some control strategy corrections were necessary to optimise roll damping and front/rear roll stiffness balancing.
Technical Paper

An Innovative Control Logic for a Four Wheel Steer Vehicle - Part 1: Analysis and Design

2005-04-11
2005-01-1267
Through a single track model, correspondence between typical frequency analysis coefficients and test driver's opinion developed after experimental tests has been stated. Benchmark analysis of several vehicles, considered significant, has been carried out as well as a sensitivity analysis of vehicle behavior depending on passive design parameters, such as vehicle sideslip stiffness and tyre relaxation length. It led to the definition of the different transfer function capable of describing passive vehicle linear behavior; vehicle performance limits, due to unbridgeable physical phenomenon, has been also considered. 4WS vehicle chance to overcome these limits has been investigated, depending on rear steering control logic complexity. Vehicle frequency response has been then analyzed for different longitudinal velocity, introducing thus the concept of “natural vehicle”. The design of a four wheel steer system control logic, based only on feed forward, is described.
Technical Paper

An Innovative Control Logic for a Four Wheel Steer Vehicle – Part 2: Simulation and Road Test

2005-04-11
2005-01-1268
A four wheel steer control logic is described. A first control logic release, obtained during previous research activity, is based only on feed forward (F.F.) but is here upgraded merging closed loop control (C.L.). Integration between F.F. and C.L. is described. Rear steering electromechanical actuator frequency response is analyzed, in order to consider its not ideal behaviour during control logic design. Several simulation are performed to qualitatively evaluate the error committed considering an ideal actuator during the control logic design. Specific manoeuvres are chosen to investigate about active system influence on vehicle handling; a 14 degrees of freedom vehicle model is validated in order to compare simulation results with experimental data.
Technical Paper

Base Model Simulator (BMS) - A Vehicle Dynamics Model to Evaluate Chassis Control Systems Performance

2005-04-11
2005-01-0401
Chassis Control Systems development methodology is nowadays strongly based on analyzing performance by using PC vehicle dynamics simulation. Generally, the overall design, test bench and road validation process is continuously accompanied by simulation. The Base Model Simulator was developed by the Vehicle Dynamics Group at the Department of Mechanics of Politecnico di Torino both to satisfy this requirement and for educational purposes. It considers a complete vehicle dynamics mathematical model, including driver, powertrain, driveline, vehicle body, suspensions, steering system, brakes, tires. The Base Model Simulator takes in account the suspensions system elastokinematics, including, for example, automatic computation of camber variation during the vehicle roll motions. Tire model considered are either Pacejka's models or experimental data.
Technical Paper

Block-oriented Models of Torque Gap Filler Devices for AMT Transmissions

2008-04-14
2008-01-0631
Vehicles equipped with Automated Manual Transmissions (AMT) for gear shift control show many advantages in terms of reduction of fuel consumption and improvement of driving comfort and shifting quality. In order to increase both performance and efficiency, an important target is focused on the minimization of the typical torque interruption during the gear shift, especially in front of the conventional automatic transmission. Recently, AMT are proposed to be connected with planetary gears and friction brakes, in order to reduce the torque gap during the gear change process. This paper is focused on a block-oriented simulation methodology developed in Matlab/Simulink/Stateflow® environment, able to simulate the performance of a complete FWD powertrain and in particular to predict dynamic performance and overall efficiency of the AMT with innovative Torque Gap Filler devices (TGF).
Technical Paper

Braking System Components Modelling

2003-10-19
2003-01-3335
The paper deals with a method implemented to study braking systems design, modelling components' characteristics through commercial software. It summarizes the potential improvement possible by using modelling techniques in chassis systems design. The first part consisted in producing a passive braking system model. A first validation was carried out on a test bench by using components of different braking systems. Particular attention was devoted to booster modelization both in semi-stationary and dynamic conditions. The second part was callipers, roll-back and thermal phenomena modelization. Finally, it were modelled Anti-lock Braking System (ABS) and Vehicle Dynamics Control (VDC) Hydraulic Units and their integration with control strategies and with vehicle dynamics model.
Technical Paper

Driveline Layout Influence on Four Wheel Drive Dynamics

2004-03-08
2004-01-0860
The paper presents the research activity managed to investigate the dynamics of a 4WD vehicle equipped considering drivelines with different layout. The procedure developed required to conceive an on purpose simulator to compare performance through virtual experimentation. Drivelines mechanical main characteristics and performance increasing due to control strategy were evaluated. Preliminary road test were performed with a single driveline layout, to evaluate simulation reliability and limits. The paper presents the 4WD vehicle simulator, the main equations applied to model open, torque sensing and limited slip differentials, some preliminary road test results showing torque sensing driveline performance.
Technical Paper

Dual Rate Boosters: Analysis, Modeling and Experimental Evaluation of Their Performance

2007-04-16
2007-01-1020
The paper describes the aims, the basic principles and the internal layout of Dual Rate boosters. It presents two models of Dual Rate boosters capable of reproducing their behavior in semi-stationary and dynamic conditions. The models can be adopted to evaluate the effect of the main parameters on the performance of the entire component. A sensitivity analysis is presented. Some comparisons between the performance of Dual Rate and Emergency Valve Assistance (EVA) boosters are dealt with, on the basis of experimental tests.
Technical Paper

Engine Control Strategy to Optimize a Shift Transient During Clutch Engagement

2001-03-05
2001-01-0877
To optimize a shift transient during clutch engagement (third phase of a gearshift) it is fundamental to define the engine velocity reference and the more appropriate instant at which to begin the clutch engagement itself. An analytical procedure to calculate the engine velocity reference value during the third phase of a gearshift and the moment when to begin the clutch engagement is presented. Simulation results obtained considering upshift and downshift with engine torque either applied or not are presented. The analytical solution presented permits to tune the third phase of the gearshift in an easier way than previous strategy based on look-up tables.
Technical Paper

Enhancing Transmission NVH Performance through Powertrain Control Integration with Active Braking System

2017-06-05
2017-01-1778
This paper explores the potentiality of reducing noise and vibration of a vehicle transmission thanks to powertrain control integration with active braking. Due to external disturbances, coming from the driver, e.g. during tip-in / tip-out maneuvers, or from the road, e.g. crossing a speed bump or driving on a rough road, the torsional backlashes between transmission rotating components (gears, synchronizers, splines, CV joints), may lead to NVH issues known as clonk. This study initially focuses on the positive effect on transmission NVH performance of a concurrent application of a braking torque at the driving wheels and of an engine torque increase during these maneuvers; then a powertrain/brake integrated control strategy is proposed. The braking system is activated in advance with respect to the perturbation and it is deactivated immediately after to minimize losses.
Technical Paper

Experimental-Numerical Correlation of a Multi-Body Model for Comfort Analysis of a Heavy Truck

2020-04-14
2020-01-0768
In automotive market, today more than in the past, it is very important to reduce time to market and, mostly, developing costs before the final production start. Ideally, bench and on-road tests can be replaced by multi-body studies because virtual approach guarantees test conditions very close to reality and it is able to exactly replicate the standard procedures. Therefore, today, it is essential to create very reliable models, able to forecast the vehicle behavior on every road condition (including uneven surfaces). The aim of this study is to build an accurate multi-body model of a heavy-duty truck, check its handling performance, and correlate experimental and numerical data related to comfort tests for model tuning and validation purposes. Experimental results are recorded during tests carried out at different speeds and loading conditions on a Belgian blocks track. Simulation data are obtained reproducing the on-road test conditions in multi-body environment.
Technical Paper

Friction inside Wheel Hub Bearings: Evaluation through Analytical Models and Experimental Methodologies

2007-09-16
2007-24-0138
This paper presents an experimental methodology which can be adopted to measure the friction torque of the bearings in the wheel hubs of passenger vehicles. The first section of the paper highlights the reasons why an experimental device is necessary to have an objective evaluation of the performance of the bearing in terms of friction. In particular, the high level of approximation of the current formulas for the estimation of the friction inside a single bearing is discussed and demonstrated. An analytical methodology for the evaluation of the distribution of the axial load between the two bearings of the wheel hub is presented. However, its practical application for the precise calculation of the distribution of the load has to be checked through experimental tests.
Technical Paper

Gearbox Design by means of Genetic Algorithm and CAD/CAE Methodologies

2010-04-12
2010-01-0895
The paper discusses a gearbox design method based on an optimization algorithm coupled to a fully integrated tool to draw 3D virtual models, in order to verify both functionality and design. The aim of this activity is to explain how the state of the art of the gear design may be implemented through an optimization software for the geometrical parameters selection of helical gears of a manual transmission, starting from torque and speed time histories, the required set of gear ratios and the material properties. This approach can be useful in order to use either the experimental acquisitions or the simulation results to verify or design all of the single gear pairs that compose a gearbox. Genetic algorithm methods are applied to solve the optimization problems of gears design, due to their capabilities of managing objective functions discontinuous, non-differentiable, stochastic, or highly non-linear.
Journal Article

Hardware and Virtual Test-Rigs for Automotive Steel Wheels Design

2020-04-14
2020-01-1231
The aim of this paper is to study in deep the peculiar test-rigs and experimental procedures adopted to the fulfilment of the principal requirements of automotive steel wheels, in particular regarding fatigue damaging. In the discussion, the standard requirements, the OEM specifications and the dimensional and geometric tolerances are approached. As result of an increasingly necessity to improve the performance of the components, innovative virtual test benches are presented. Differently from their traditional precursors, virtual test-rigs give an extended view of the physical behaviour of the component as the possibility to monitor stress-strain distribution in deep. In the first section, the state of the art and the specifications are listed. Secondly, the adopted hardware test-rigs as the experimental tests are described in detail. In the third one, proposed virtual test-rig is discussed.
Technical Paper

Hardware-In-the-Loop (HIL) Testing of ESP (Electronic Stability Program) Commercial Hydraulic Units and Implementation of New Control Strategies

2004-10-10
2004-01-2770
Firstly, the paper presents Politecnico di Torino Hardware-in-the-Loop (HIL) brake systems test bench. Secondly, it describes in detail all the necessary basic tests to characterize, on the bench, an ESP hydraulic unit: for example, step response of each valve, measurement of pressure limiter valves calibration, step response of motor pump unit. The experimental results are reported. Thirdly, the paper deals with the frequency response of ESP valves, by using Pulse Width Modulation. Pressure gradients and pressure oscillations obtained in the tests are commented in detail. An open loop actuation strategy for ESP is presented, permitting to obtain, in each condition, the desired wheels pressure levels, without having any output pressure sensor in the hydraulic unit. This strategy was conceived by simulation and then successfully tested on the bench. An ESP control strategy, complete of a diagnostic algorithm, was added to the actuation logic described before and tested on the bench.
X