Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Technical Paper

A Generic Modeling Approach for Automotive Power Net Consumers

2012-04-16
2012-01-0924
The integration of safety-critical and major power-consuming electrical systems presents a challenge for the development of future automotive electrical networks. Both reliability and performance must be enhanced in order to guarantee the power supply to essential electrical consumers at a sufficient degree of power quality. Often, in order to cope with these requirements, merely an upgrade of the existing wiring harness design is used, resulting in additional complexity, weight, and cost [3]. A characterization of the wiring harness and its electrical consumers facilitates a systematic optimization approach aimed at designing new automotive power networks [1, 5]. Measurement and analysis methods to characterise the thermal behaviour of the wiring harness have been presented and discussed in a previous paper [4] This paper presents and compares two methods aimed at modeling the electrical behavior of consumers at various voltages and temperatures.
Technical Paper

A Neural Estimator for Cylinder Pressure and Engine Torque

1999-03-01
1999-01-1165
The paper presents a new method based on neural networks to model the dynamic behavior of combustion pressure in SI engine cylinders, represented only by conventional input-output data. The approach is based on a functional representation of the pressure curve. The function parameters are adjusted by training a static neural network (SNN) for each working cycle. These parameters resp. “weights” are used in the following as reference pressure feature sequences. The sequences are simulated using time delay neural network (TDNN) as functions of engine speed, manifold pressure, ignition time and A/F ratio. The developed models can be used as stand alone models or as submodels within a global structure. It can be integrated as a real-time model in a HIL simulator to stimulate an ECU or implemented within an ECU for torque estimation. Performance of the proposed modeling strategy is verified by comparing experimental data from a test bench to real-time simulation results.
Journal Article

A New Approach to the Test, Assessment and Optimization of Robust Electrical Distribution Systems

2013-04-08
2013-01-0396
Both the electrical portion of the powertrain and the rising number of auxiliary systems will considerably increase the electrical power requirements in future vehicles. In addition, multiple voltage supply levels will enhance the complexity of the electrical distribution system (EDS), while strict cost, weight, packaging, and safety constraints must be upheld, posing serious design challenges in terms of robustness, reliability and energy efficiency. Currently, a self-contained integral test or evaluation of the EDS is normally not applied. For such a purpose, quantitative quality criteria are introduced here which allow a comparative assessment of an EDS by addressing the dynamic and static stability of the supply voltage, the reliability of the fusing system, and the ability to provide the required electrical power. The presented approach uses both precisely-defined test scenarios and a comprehensive EDS test bench.
Technical Paper

A Real-Time Model of a Common Rail Diesel Engine

1999-03-01
1999-01-0862
Common rail fuel injection is the latest breakthrough in diesel engine technology. For research, development and quality control of the used electronic control units (ECU's), hardware-in-the-loop-simulation (HIL) is a useful tool for test and verification. The paper describes a high resolution real-time model of pump, rail, control valve and injectors which results in a reliable approximation of the dynamic characteristic of pressure and mass flow of the fuel. In respect to computing time and system resources this model is combined with a steady state model of a Diesel engine. It describes mainly the effects of the input variables start of injection and injection time on the engine torque at the operating point of the engine, defined by its speed and intake manifold pressure. The theoretical deduction will be completed by simulation results of the transient behavior of a Common Rail engine which are simulated by the real-time simulator CARTS(1) (Figure 1) connected to a Diesel-ECU.
Technical Paper

An Improved Real-Time Model of a Planetary Gear Train

1997-02-24
970970
Advanced automatic transmissions are controlled by electronic control units (ECUs) which perform the gear change and furthermore a lot of complex control and diagnostic functions. Hardware-in-the-loop simulation (HIL) is a powerful tool to develop and test the control algorithms implemented in the ECUs. The simulation is based upon mathematical models of the different power train components, adapted to the real-time requirements. In this paper an improved real-time model of an automatic transmission with a Ravigneaux planetary gear train is presented. This transmission contains among other components numerous clutches and brakes. The time-variant states of these nonlinear elements (sliding and static friction) lead to numerical problems with respect to real-time simulation. In the suggested model the transferred torques of the different clutches and brakes are calculated using the methods of multi-variable control.
Technical Paper

CARTS - A Hardware in the Loop Simulator for Test and Development of Automotive Control Units

1996-02-01
961019
Advanced passenger car control is based on multiple electronic control units (ECUs), performing complex control algorithms and diagnostic functions for the different power train components like combustion engine, automatic transmission, brakes or chassis. For research and development the engineers need tools to test and verify either the reliability of new control strategies implemented in the ECUs or the interaction of different ECUs in a car. These tests should be done to the highest extent in the laboratory to reduce costs and risks which are involved in test stands or experimental cars. Therefore the optimal solution is the operation of the ECUs in a real-time closed loop environment.
Technical Paper

Characterization and Test of Automotive Electrical Power Networks

2009-04-20
2009-01-1093
The integration of safety-critical and major power-consuming electrical systems presents a challenge for the development of future vehicle power nets. Reliability and performance of the electrical network must be enhanced in order to guarantee the power supply to essential electrical consumers at a sufficient degree of power quality. This paper presents a test bench for automotive electrical networks based on a hardware-in-the-loop (HiL) platform. The test bench is used to assess the power and temperature behavior of the wiring harness and the connected power consumers. This characterisation facilitates the development of new tailored automotive electrical networks to meet the increased requirements while efficiently using the available resources.
Technical Paper

Development of Fuel Cell System Air Management Utilizing HIL Tools

2002-03-04
2002-01-0409
In this paper, boosting strategies are investigated for part load operation of typical fuel-cell-systems. The optimal strategy can mainly be obtained by simulation. The boosting strategy is one of the most essential parameters for design and operation of a fuel-cell-system. High pressure ratios enable high power densities, low size and weight. Simultaneously, the demands in humidification and water recovery for today's systems are reduced. But power consumption and design effort of the system increases strongly with the pressure level. Therefore, the main focus must be on the system efficiencies at part load. In addition, certain boundary conditions like the inlet temperature of the fuel-cell stack must be maintained. With high pressure levels the humidification of the intake air before, within or after the compressor is not sufficient to dissipate enough heat. Vaporization during the compression process shows efficiency advantages while the needs in heat dissipation decreases.
Technical Paper

Hardware-in-the-Loop Based Virtual Emission Calibration for a Gasoline Engine

2021-04-06
2021-01-0417
In the field of gasoline powertrain calibration, the challenges are growing due to ever shorter time-to-market requirements and a simultaneous increase in powertrain complexity. In addition, the great variety of vehicle variants requires an increasing number of prototypes for calibration and validation tasks within the framework of the current Real Driving Emissions (RDE) regulations and the expected Post Euro 6 emission standards. Hardware-in-the-Loop (HiL) simulations have been introduced successfully to support the calibration tasks in parallel to the conventional vehicle development activities. The HiL approach enables a more reliable compliance with emission limits and improves the quality of calibrations, while reducing the number of prototype vehicles, test resources and thus overall development costs.
Technical Paper

HiL-Calibration of SI Engine Cold Start and Warm-Up Using Neural Real-Time Model

2004-03-08
2004-01-1362
The modern engine design process is characterized by shorter development cycles and a reduced number of prototypes. However, simultaneously exhaust after-treatment and emission testing is becoming increasingly more sophisticated. The introduction of predictive real-time simulation tools that represent the entire powertrain can likely contribute to improving the efficiency of the calibration process. Engine models, which are purely based on physical first principles, are usually not capable of real-time applications, especially if the simulation is focused on cold start and warm-up behavior. However, the initial data definition for the ECU using a Hardware-in-the-Loop (HiL)-Simulator requires a model with both real-time capability and sufficient accuracy. The use of artificial intelligence systems becomes necessary, e.g. neural networks. Methods, structures and the realization of a hybrid real-time model are presented in this paper, which combines physical and neural network models.
Technical Paper

HiL-based ECU-Calibration of SI Engine with Advanced Camshaft Variability

2006-04-03
2006-01-0613
A main focus of development in modern SI engine technology is variable valve timing, which implies a high potential of improvement regarding fuel consumption and emissions. Variable opening, period and lift of inlet and outlet valves enable numerous possibilities to alter gas exchange and combustion. However, this additional variability generates special demands on the calibration process of specific engine control devices, particularly under cold start and warm-up conditions. This paper presents procedures, based on Hardware-in-the-Loop (HiL) simulation, to support the classical calibration task efficiently. An existing approach is extended, such that a virtual combustion engine is available including additional valve timing variability. Engine models based purely on physical first principles are often not capable of real time execution. However, the definition of initial parameters for the ECU requires a model with both real time capability and sufficient accuracy.
Technical Paper

Improving Real-Time SI Engine Models by Integration of Neural Approximators

1999-03-01
1999-01-1164
Real-time models, which reflect dynamic behavior of the SI engine, are needed for building up ECU testing devices like HIL simulators. In this paper the thermodynamic processes are reduced to some basic assumptions and combined with neural approximators of testbench data. So the parameters of the approximators can be easily adapted to similar new engines, while the principle structure describing interaction of the time- and angle-based processes remains unchanged. The model has been implemented and tested in a HIL-simulator. The performance of the proposed modeling strategy could be proved by comparing measurement data from a test bench to real-time simulation results.
Technical Paper

Investigation of Predictive Models for Application in Engine Cold-Start Behavior

2004-03-08
2004-01-0994
The modern engine development process is characterized by shorter development cycles and a reduced number of prototypes. However, simultaneously exhaust after-treatment and emission testing is becoming increasingly more sophisticated. It is expected that predictive simulation tools that encompass the entire powertrain can potentially improve the efficiency of the calibration process. The testing of an ECU using a HiL system requires a real-time model. Additionally, if the initial parameters of the ECU are to be defined and tested, the model has to be more accurate than is typical for ECU functional testing. It is possible to enhance the generalization capability of the simulation, with neuronal network sub-models embedded into the architecture of a physical model, while still maintaining real-time execution. This paper emphasizes the experimental investigation and physical modeling of the port fuel injected SI engine.
Technical Paper

Neural Network Modeling of Black Box Controls for Internal Combustion Engine Calibration

2024-07-02
2024-01-2995
The calibration of Engine Control Units (ECUs) for road vehicles is challenged by stringent legal and environmental regulations, coupled with short development cycles. The growing number of vehicle variants, although sharing similar engines and control algorithms, requires different calibrations. Additionally, modern engines feature increasingly number of adjustment variables, along with complex parallel and nested conditions within the software, demanding a significant amount of measurement data during development. The current state-of-the-art (White Box) model-based ECU calibration proves effective but involves considerable effort for model construction and validation. This is often hindered by limited function documentation, available measurements, and hardware representation capabilities. This article introduces a model-based calibration approach using Neural Networks (Black Box) for two distinct ECU functional structures with minimal software documentation.
Technical Paper

Objectified Evaluation and Classification of Passenger Vehicles Longitudinal Drivability Capabilities in Automated Load Change Drive Maneuvers at Engine-in-the-Loop Test Benches

2020-04-14
2020-01-0245
The growing number of passenger car variants and derivatives in all global markets, their high degree of software differentiability caused by regionally different legislative regulations, as well as pronounced market-specific customer expectations require a continuous optimization of the entire vehicle development process. In addition, ever stricter emission standards lead to a considerable increase in powertrain hardware and control complexity. Also, efforts to achieve market and brand specific multistep adjustable drivability characteristics as unique selling proposition, rapidly extend the scope for calibration and testing tasks during the development of powertrain control units. The resulting extent of interdependencies between the drivability calibration and other development and calibration tasks requires frontloading of development tasks.
Technical Paper

Proof of Concept for Hardware-in-the-Loop Based Knock Detection Calibration

2021-04-06
2021-01-0424
Knock control is one of the most vital functions for safe and fuel-efficient operation of gasoline engines. However, all knock control strategies rely on accurate knock detection to operate the engine close to the optimal set point. Knock detection is usually calibrated on the engine test bench, requiring the engine to run with knocking combustion in a time-consuming multi-stage campaign. Model-based calibration significantly reduces calibration loops on the test bench. However, this method requires a large effort in building and validating the model, which is often limited by the lack of function documentation, available measurements or hardware representation. As the software models are often not available, function structures vary between manufacturers and sub model functions are often documented as black boxes. Hence, using the model-based approach is not always possible.
Technical Paper

Real-Time Simulation Environment for the Test of Driver Assistance Systems

2009-04-20
2009-01-0157
The paper presents a simulation environment for the test of driver assistance systems. It covers software-in-the-loop and hardware-in-the-loop test capabilities. In the hardware-in-the-loop (HiL) configuration, real components such as electronic control units (ECUs) and actuators are embedded in the system. First, requirements for a virtual environment are defined. They build the basis for the entire simulation. Special emphasis is given to the interaction between the simulated vehicle under test and its traffic environment. A virtual environment was developed in which the simulated vehicle can drive on a road together with the surrounding traffic. The simulation environment is composed mainly of a traffic scenario generator and a simulation of sensor behavior allowing the recognition of the vehicle's surroundings. Appropriate critical traffic scenarios are generated depending on the tested driver assistance system.
Technical Paper

SI Engine Modeling Using Neural Networks

1998-02-23
980790
SI engines are dynamic systems with highly nonlinear characteristics which are controlled by ECUs performing complex control algorithms. Hardware-in-the-Loop (HIL) simulation is an important tool to support test and verification during the development phase. The simulation model has to accurately reflect the dynamic behavior of the SI engine in the whole operating area. This paper describes a neural network approach to identify, i.e. to model a nonlinear dynamic system, the SI engine, represented only by I/O measurement data. The neural models have advantages with respect to robustness and measuring extent. They can be used as stand alone models or as sub-models integrated in a global model based on a physical structure. Measurements from a test bench compared to real-time simulation results prove the performance of the proposed modeling strategy.
Technical Paper

Scalable Mean Value Modeling for Real-Time Engine Simulations with Improved Consistency and Adaptability

2019-04-02
2019-01-0195
This article discusses highly flexible and accurate physics-based mean value modeling (MVM) for internal combustion engines and its wide applicability towards virtual vehicle calibration. The requirement to fulfill the challenging Real Driving Emissions (RDE) standards has significantly increased the demand for precise engine models, especially models regarding pollutant emissions and fuel economy. This has led to a large increase in effort required for precise engine modeling and robust model calibration. Two best-practice engine modeling approaches will be introduced here to satisfy these requirements. These are the exclusive MVM approach, and a combination of MVM and a Design of Experiments (DOE) model for heterogeneous multi-domain engine systems.
X