Refine Your Search

Topic

Search Results

Viewing 1 to 12 of 12
Technical Paper

A Comparative Study of Knock Formation in Gasoline and Methanol Combustion Using a Multiple Spark Ignition Approach: An Optical Investigation

2024-04-09
2024-01-2105
Engine knock is a major challenge that limits the achievement of higher engine efficiency by increasing the compression ratio of the engine. To address this issue, using a higher octane number fuel can be a potential solution to reduce or eliminate the propensity for knock and so obtain better engine performance. Methanol, a promising alternative fuel, can be produced from conventional and non-conventional energy resources, which can help reduce pollutant emissions. Methanol has a higher octane number than typically gasolines, which makes it a viable option for reducing knock intensity. This study compared the combustion characteristics of gasoline and methanol fuels in an optical spark-ignition engine using multiple spark plugs. The experiment was carried out on a single-cylinder four-stroke optical engine. The researchers used a customized metal liner with four circumferential spark plugs to generate multiple flame kernels inside the combustion chamber.
Technical Paper

Analysis of a Supercharged Gas Turbine Engine Concept and Preliminary Investigation of a Version Using Argon as the Working Fluid

2022-03-29
2022-01-0595
The paper presents results from a study into the potential of a complex cycle gas turbine engine, originally investigated by the Ford Motor Company for truck applications in the 1960s, and updated to gauge the possible improvements by raising the efficiencies of its constituent components from the values used in period to more modern levels. To perform this investigation, firstly a spreadsheet model was constructed and the data that Ford made available in the open literature were used to validate it. The methodology used in the model was to balance the power consumed by the compressors (and the auxiliaries where applicable) with that produced by their driving turbines, and to match the thermal power in the heat exchangers with the data provided. Using the quoted lower heating value of the diesel fuel originally used, this approach led to an accuracy in the match of brake specific fuel consumption (in terms of g/kWh) to three places of decimals.
Technical Paper

GEM Ternary Blends: Removing the Biomass Limit by using Iso-Stoichiometric Mixtures of Gasoline, Ethanol and Methanol

2011-09-11
2011-24-0113
The paper presents the concept of ternary blends of gasoline, ethanol and methanol in which the stoichiometric air-fuel ratio (AFR) is controlled to be 9.7:1, the same as that of conventional ‘E85’ alcohol-based fuel. This makes them iso-stoichiometric. Such blends are termed ‘GEM’ after the first initial of the three components. Calculated data is presented showing how the volumetric energy density relationship between the three components in these blends changes as the stoichiometric AFR is held constant but ethanol content is varied. From this data it is contended that such GEM blends can be ‘drop-in’ alternatives to E85, because when an engine is operated on any of these blends the pulse widths of the fuel injectors would not change significantly, and so there will be no impact on the on-board diagnostics from the use of such blends in existing E85/gasoline flex-fuel vehicles.
Technical Paper

Investigation of Naphtha-Type Biofuel from a Novel Refinery Process

2022-03-29
2022-01-0752
In order to reduce the carbon footprint of the Internal Combustion Engine (ICE), biofuels have been in use for a number of years. One of the problems with first-generation (1G) biofuels however is their competition with food production. In search of second-generation (2G) biofuels, that are not in competition with food agriculture, a novel biorefinery process has been developed to produce biofuel from woody biomass sources. This novel technique, part of the Belgian federal government funded Ad-Libio project, uses a catalytic process that operates at low temperature and is able to convert 2G feedstock into a stable light naphtha. The bulk of the yield consists out of hydrocarbons containing five to six carbon atoms, along with a fraction of oxygenates and aromatics. The oxygen content and the aromaticity of the hydrocarbons can be varied, both of which have a significant influence on the fuel’s combustion and emission characteristics when used in Internal Combustion Engines.
Technical Paper

Investigations into the Effects of Spark Plug Location on Knock Initiation by using Multiple Pressure Transducers

2021-09-21
2021-01-1159
Despite a long history of development, modern spark-ignition (SI) engines are still restricted in obtaining higher thermal efficiency and better performance by knock. Knocking combustion is an abnormal combustion phenomenon caused by the autoignition of unburned air-fuel mixture ahead of the propagating flame front. This work describes investigations into the significance of spark plug location (with respect to inlet and exhaust valve position) on the knock formation mechanism. To facilitate the investigation, four spark plugs were installed in a specialized liner at four equispaced distinct locations to propagate flames from those locations, which provoked a distinct flame propagation from each and thus individual autoignition profiles. Six pressure transducers were arranged to precisely record the pressure oscillations, knock intensities, and combustion characteristics.
Journal Article

Octane Appetite: The Relevance of a Lower Limit to the MON Specification in a Downsized, Highly Boosted DISI Engine

2014-10-13
2014-01-2718
Market demand for high performance gasoline vehicles and increasingly strict government emissions regulations are driving the development of highly downsized, boosted direct injection engines. The in-cylinder temperatures and pressures of these emerging technologies tend to no longer adhere to the test conditions defining the RON and MON octane rating scales. This divergence between fuel knock rating methods and fuel performance in modern engines has previously led to the development of an engine and operating condition dependent scaling factor, K, which allows for extrapolation of RON and MON values. Downsized, boosted DISI engines have been generally shown to have negative K-values when knock limited, indicating a preference for fuels of higher sensitivity and challenging the relevance of a lower limit to the MON specification.
Technical Paper

On the Application of Joule-Cycle-Based Waste Heat Recovery to Heavy-Duty Vehicles

2024-04-09
2024-01-2589
Internal combustion engines are becoming ever more efficient as mankind seeks to mitigate the effects of climate change while still maintaining the benefits that a mechanized society has brought to the global economy. As peak values, mass production spark-ignition engines can now achieve approximately 40% brake thermal efficiency and heavy-duty truck compression-ignition engines can approach 50%. While commendable, the unfortunate truth is that the remainder gets emitted as waste heat and is sent to the atmosphere to no useful purpose. Clearly, if one could recover some of this waste heat for beneficial use then this is likely to become important as new means of mitigating fossil CO2 emissions are demanded. A previous study by the authors has identified that the closed Joule cycle (or complications of it beginning to approximate the closed Ericsson cycle) could reasonably be developed to provide a practical means of recovering exhaust heat when applied to a large ship engine.
Technical Paper

SuperGen - A Novel Low Costs Electro-Mechanical Mild Hybrid and Boosting System for Engine Efficiency Enhancements

2016-04-05
2016-01-0682
SuperGen is a Belt Integrated Starter Generator (B-ISG) combined with a novel electro-mechanical power split transmission system providing variable speed centrifugal supercharger capability, all in one compact package. This paper initially discusses the analysis of SuperGen application to a gasoline SUV in order to examine the BISG power and voltage mild hybrid functionality trade-off versus fuel consumption reduction on drive cycle. A significant engine down speeding was also applied based on the low speed torque enhancement afforded by SuperGen boosting capability, both transiently, and sustainably at steady state engine operation. This has been demonstrated and reported on the well-published Jaguar Land Rover (JLR) Ultraboost project.
Journal Article

Testing of a Modern Wankel Rotary Engine - Part IV: Overall Mechanical and Thermal Balance

2022-08-30
2022-01-1001
The present work extends the performance analysis of a rotary Wankel engine for range extender applications already introduced in the companion papers of this series. Specifically, in this work, an overall balance was carried out on mechanical and thermal parameters inferred from the indicated pressure cycles and those measured by the dynamometer and the data acquisition system during steady-state engine testing, highlighting the energy fluxes within the machine. The evaluation of the in-chamber heat transfer coefficient, by means of an adapted Woschni model, and the related heat rejected to the coolant represent the additional and necessary analysis to complete the experimental assessment already presented in the previous papers. The tested engine is the Advanced Innovative Engineering 225CS and the experimental testing was conducted using a combustion analyser specifically developed for rotary machines.
Journal Article

The Lotus Range Extender Engine

2010-10-25
2010-01-2208
The paper discusses the concept, specification and performance of a new, dedicated range extender engine for plug-in series hybrid vehicles conceived and designed by Lotus Engineering. This has been undertaken as part of a consortium project called Limo Green, part-funded by the UK government. The Lotus Range Extender engine has been conceived from the outset specifically as an engine for a plug-in series hybrid vehicle, therefore being free of some of the constraints placed on engines which have to mate to conventional, stepped mechanical transmissions. The paper starts by defining the philosophical difference between an engine for range extension and an engine for a full series hybrid vehicle, a distinction which is important with regard to how much power each type must produce. As part of this, the advantages of the sparkignition engine over the diesel are outlined.
Technical Paper

The Omnivore Wide-range Auto-Ignition Engine: Results to Date using 98RON Unleaded Gasoline and E85 Fuels

2010-04-12
2010-01-0846
Omnivore is a single cylinder spark ignition based research engine conceived to maximize the operating range of auto-ignition on a variety of fossil and renewable fuels. In order to maximize auto-ignition operation, the two-stroke cycle was adopted with two independent mechanisms for control. The charge trapping valve system is incorporated as a means of varying the quantity of trapped residuals whilst a variable compression ratio mechanism is included to give independent control over the end of compression temperature. The inclusion of these two technologies allows the benefits of trapped residual gas to be maximised (to minimize NOx formation) whilst permitting variation of the onset of auto-ignition. 2000rpm and idle are the main focus of concern whilst also observing the influence of injector location. This paper describes the rational behind the engine concept and presents the results achieved at the time of writing using 98ulg and E85 fuels.
Technical Paper

Using Multiple Ignition Sites and Pressure Sensing Devices to Determine the Effect of Air-Fuel Equivalence Ratio on the Morphology of Knocking Combustion

2022-03-29
2022-01-0433
In spark-ignition combustion, knocking combustion inherently presents an interaction between the main flame front and end gas autoignition. Conventionally, it generates a high amplitude pressure wave traveling across the chamber that can be responsible for reducing the performance of the engine, and can cause heavy damage to engine components. In order to study the phenomenon in a controllable way, experiments were performed on a specialized single-cylinder research engine fitted with a liner equipped with four equi-spaced spark plugs in the side so as to propagate various flame topologies from those locations, and hence achieve more controlled knock events. In addition, six pressure transducers were employed at distinct locations to precisely record details of the autoignition event by monitoring the pressure oscillations, and with them the combustion characteristics and knock intensity.
X