Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Technical Paper

A Concept Investigation Simulation Model on Hybrid Powertrains for Handheld Tools

2020-11-30
2020-32-2316
Amid the increasing demand for higher efficiency in combustion driven handheld tools, the recent developments in electric machine technology together with the already existing benefits of small combustion engines for these applications favor the investigation of potential advantages in hybrid powertrain tools. This concept-design study aims to use a fully parametric, system-level simulation model with exchangeable blocks, created with a power-loss approach in Matlab and Simulink, in order to examine the potential of different hybrid configurations for different tool load cycles. After the model introduction, the results of numerous simulations for 36 to 100 cc engine displacement will be presented and compared in terms of overall system efficiency and overall powertrain size. The different optimum hybrid configurations can show a reduction up to 30 % in system’s brake specific fuel consumption compared to the baseline combustion engine driven model.
Technical Paper

An Integrated 3D CFD Simulation Methodology for the Optimization of the Mixture Preparation of 2-Stroke DI Engines

2007-10-30
2007-32-0029
For the development of high-performance 2-stroke engines with internal mixture preparation it is essential to know about the interaction between charge motion and injection spray. With no prototypes available conceptual investigations can only render such information by using 3D CFD simulation. In this way an optimization of mixture preparation and charge motion can be achieved by varying the transfer and boost ports. To allow for the influence of these modifications on the mass balance (volumetric and trapping efficiency), the entire system of the loop-scavenged two-stroke engine has to be investigated. The state of the art calculation domain for 2-stroke 3D CFD simulation is bounded at the inlet of the crankcase (reed valve) and sometimes also at the outlet of the cylinders. The reasons lie in the so far not sufficiently reproducible components (e.g. reed valve) as well as in the reduction of calculation time.
Technical Paper

Basic Investigations on the Prediction of Spray-Wall and Spray-Fluid Interaction for a GDI Combustion Process

2010-09-28
2010-32-0030
This publication covers investigations on different 3D CFD models for the description of the spray wall and droplet-fluid interaction and the influence of these models on the mixture formation calculation results. Basic experimental investigations in a spray chamber and a flow tunnel as well as the corresponding 3D CFD simulation were conducted in order to clarify the prediction quality of the physical phenomena of spray-wall and spray-fluid interaction by the simulation. Influencing parameters such as the piston top temperature, piston bowl geometry, soot deposits on the piston top as well as flow velocity are investigated. This paper provides a direct link between the underlying simulation models of the mixture formation and actual real world combustion system development processes - underlining the importance of a close interaction of the model calibration and the development process.
Technical Paper

CFD Simulation Methodology for a Rotary Steam Expansion Piston Engine

2020-11-30
2020-32-2303
In industrial processes and other power generation processes, large amounts of waste heat are often lost to the environment. The conversion of this thermal energy into mechanical work promises a significant improvement in energy-utilization, the efficiency of the overall system and, consequently, cost-effectiveness. Therefore, the use of a Rankine-Cycle is a well-established technical process. A recent research project has investigated a novel expansion machine to be integrated into such an RC-process. Primarily, the present work deals with the fluid dynamic simulation of this expander, which is based on the principle of a rotary piston engine. The aim is to develop, analyze and optimize the process and the corresponding components. Hence, a CFD-model had to be built up, which should correspond as closely as possible to the physical engine.
Technical Paper

Concept Study of a 48V-Hybrid-Powertrain for L-Category Vehicles with Longitudinal Dynamic Simulation and Design of Experiments

2022-03-29
2022-01-0672
The demand for high efficiency powertrains in automotive engineering is further increasing, with hybrid powertrains being a feasible option to cope with new legislations. So far hybridization has only played a minor role for L-category vehicles. Focusing on an exemplary high-power L-category on-road vehicle, this research aims to show a new development approach, which combines longitudinal dynamic simulation (LDS) with “Design of Experiments” (DoE) in course of hybrid electric powertrain development. Furthermore, addressing the technological aspect, this paper points out how such a vehicle can benefit from 48V-hybridization of its already existing internal combustion powertrain. A fully parametric LDS model is built in Matlab/Simulink, with exchangeable powertrain components and an adaptable hybrid operation strategy. Beforehand, characterizing decisions as to focus on 48V and on parallel hybrid architecture are made.
Technical Paper

Crankcase Supercharged Four Stroke Engine with Oil Separating System

2004-01-01
2004-01-2105
An efficient and economic method to increase the performance of four stroke engines can be accomplished by utilizing the crankcase supercharging method. The lubrication of the movable parts in the crankcase by mixing the intake air with lubricant leads to a high oil consumption and disadvantages in the emission characteristics. This paper describes parts of a research project with the goal to develop a supercharged four–stroke engine with a closed loop lubrication system for the crank train and the cylinder head. The thermodynamic layout and the development of an oil separating system have been carried out with the help of simulation tools and development work on a flow test bench.
Technical Paper

DESIGN AND DEVELOPMENT OF A 50CC SCOOTER FRAME SUPPORTED BY TESTING AND SIMULATION

2005-10-12
2005-32-0100
Modern small capacity motor scooters make high demands on a trendy vehicle design in combination with a customer friendly handling and multifarious storage space. In addition, increasing engine performance characteristics and high requirements on the vehicle weight call for the development of new vehicle frame concepts. Considering lightweight construction and strength durability, the new concepts are also due to fulfill the boundaries of a low cost production. The driving behavior of a scooter is directly influenced by the interaction of the suspension components, the mounting system of the drive unit and the stiffness of the frame. The present publication treats an assessment of different frame types in the 50cc scooter class by tests and simulation with the target to formulate key data regarding the solidness and stiffness characteristics. Based on these data collection a complete new frame concept has been designed and revised by calculation.
Technical Paper

Early stage development of a 4-stroke gas exchange process by the use of a coupled 1D / 3D simulation strategy

2009-11-03
2009-32-0101
In the early phase of an engine development process, the main characteristics of an engine setup, such as lengths, diameter and volumes, are usually defined by means of 1D CFD simulation technologies. Only single flow situations are modeled in 3D due to the high expenditure of time and money. This paper presents a new efficient development methodology using 1D, 3D as well as coupled 1D/3D simulation techniques - the described simulation strategy leads to a more realistic and more comparable reproduction of the flow situation, especially in the critical areas of the simulation domain, while avoiding the restrictions and disadvantages of 1D and 3D simulation. By the use of test bench results of a comparable prototype engine, the quality of the simulation strategy has been successfully verified.
Journal Article

Efficiency Increase of a Conventional ICE Powertrain with CVT by 48V-Hybridization with Focus on L-Category Powersport Applications

2022-01-09
2022-32-0018
In recent years, E-mobility relevance has increased in the automotive sector, yet pure electric vehicles struggle to establish themselves in the still internal combustion engine (ICE) dominated sector of L-category and powersport applications. Battery electric hybrid L-category vehicles, as considered in this paper, combine both ICE and electric powertrains. Nowadays, numerous ICE L-category vehicles use rubber V-belt continuous variable transmissions (CVT) due to their reliability and user-friendliness, which often outweighs the drawback of relatively low efficiency. This paper not only aims to show, with the help of longitudinal dynamic simulation (LDS), how a state-of-the-art L-category ICE powertrain with special focus on the CVT can benefit from hybridization in terms of overall efficiency, but furthermore points out where the efficiency increase actually comes from and how this new knowledge can be implemented intelligently into a hybrid strategy.
Technical Paper

Expansion to Higher Efficiency - Experimental Investigations of the Atkinson Cycle in Small Combustion Engines

2015-11-17
2015-32-0809
The enhancement of efficiency will play a more and more important role in the development of future (small) internal combustion engines. In recent years, the Atkinson cycle, realized over the crank drive, has attracted increasing attention. Several OEMs have been doing investigations on this efficiency-increasing principle with in the whole range from small engines up to automotive ones. In previous publications, the authors stated that an indicated efficiency of up to 48% could be reached with an Atkinson cycle-based engine. However, these studies are based on 1D-CFD simulation. To verify the promising simulation results, a prototype engine, based on the Atkinson principle, was designed and experimentally tested. The aim of the present study is to evaluate and validate the (indicated) engine efficiency gained by experimental tests compared to the predicted simulation results. In order to investigate part load behavior, several valve timing strategies were also developed and tested.
Technical Paper

Expansion to Higher Efficiency - Investigations of the Atkinson Cycle in Small Combustion Engines

2012-10-23
2012-32-0059
Small combustion engines can be found in various applications in daily use (e.g. as propulsion of boats, scooters, motorbikes, power-tools, mobile power units, etc.) and have predominated these markets for a long time. Today some upcoming competitive technologies in the field of electrification can be observed and have already shown great technical advances. Therefore, small combustion engines have to keep their present advantages while concurrently minimizing their disadvantages in order to remain the predominant technology in the future. Whereas large combustion engines are most efficient thermal engines, small engines still suffer from significantly lower efficiencies caused by a disadvantageous surface to volume ratio. Thus, the enhancement of efficiency will play a key role in the development of future small combustion engines. One promising possibility to improve efficiency is the use of a longer expansion than compression stroke.
Technical Paper

Extended Expansion Engine with Mono-Shaft Cam Mechanism for Higher Efficiency - Layout Study and Numerical Investigations of a Twin Engine

2014-11-11
2014-32-0102
The automotive industry has made great efforts in reducing fuel consumption. The efficiency of modern spark ignition (SI) engines has been increased by improving the combustion process and reducing engine losses such as friction, gas exchange and wall heat losses. Nevertheless, further efficiency improvement is indispensable for the reduction of CO2 emissions and the smart usage of available energy. In the previous years the Atkinson Cycle, realized over the crank train and/or valve train, is attracting considerable interest of several OEMs due to the high theoretical efficiency potential. In this publication a crank train-based Atkinson cycle engine is investigated. The researched engine, a 4-stroke 2 cylinder V-engine, basically consists of a special crank train linkage system and a novel Mono-Shaft valve train concept.
Journal Article

Extension of the Lean Limit of Gasoline Engines Under Part Load by Using Hot Surface Assisted Spark Ignition (HSASI)

2022-01-09
2022-32-0051
Charge dilution by lean-burn is one way to increase the efficiency of spark ignition engines while reducing NOx emissions. This work focuses on increasing the flammability of lean mixtures inside a passive pre-chamber spark plug by elevating its temperature with the help of a controllable hot surface integrated into the pre-chamber. Thus, an extension of the lean limit under part load is aimed for. A pre-chamber spark plug prototype with an integrated, controllable glow plug was developed, called Hot Surface Assisted Spark Ignition (HSASI). Experimental investigations were conducted on a single-cylinder engine at the Karlsruhe University of Applied Sciences. Operating modes with an active glow plug (HSASI) and a non-active glow plug were compared. The lean limit for both operation modes were determined under part load. NOx, CO and THC emissions were measured for different air-fuel equivalence ratios λ. The lean limit is extended by more than 0.1 in λ at low loads with HSASI operation.
Technical Paper

GDI with High-Performance 2-Stroke Application: Concepts, Experiences and Potential for the Future

2004-09-27
2004-32-0043
Thanks to its unsurpassed power-to-weight ratio, its low package space and low-maintenance design, the loop-scavenged two-stroke engine with conventional mixture preparation is still being used in some sectors of vehicle engineering, such as boat drives, snow mobiles and motor scooters, as well as in hand-held applications. To maintain the potential of the 2-stroke engine for the future it is necessary to take adequate steps against the system-dependent disadvantage of the simple 2-stroke engine, namely that of higher emissions compared to 4-stroke engines. One possible solution is gasoline direct injection. Its more frequent use will increase the production numbers, making it an interesting technology even in the above-mentioned cost-sensitive applications. The current report presents various concepts of direct injection in 2-stroke engines, from air-assisted injection through to high-pressure direct injection, and compares them with traditional techniques of mixture formation.
Technical Paper

Layout and Development of a 300 cm3 High Performance 2S-LPDI Engine

2015-11-17
2015-32-0832
In consideration of the fact that in extreme Enduro competitions two-stroke motorcycles are still dominating, the Institute of Internal Combustion Engines and Thermodynamics, Graz University of Technology, with a long tradition in two-stroke technology, has developed a new 300 cm3 two-stroke motorcycle engine. The 2-stroke LPDI (Low Pressure Direct Injection) technology was originally developed for the 50 cm3 Scooter and moped market in Europe. In 50 cm3 applications the LPDI technology fulfils the EURO 4 emission standard (2017) [1]. In a next step the LPDI technology was applied to a 250 cm3 Enduro engine demonstrator vehicle. Based on the results of the demonstrator, a complete new high performance 300 cm3 engine was developed. The development of this new engine will be described in this publication. Some interesting aspects of the layout with 3D-CFD methods and also 1D-CFD simulation to optimize the exhaust system by DoE methods are discussed in the paper.
Technical Paper

Low Cost Range Extender Technology for Hybrid Electric City Scooters

2012-10-23
2012-32-0083
Electric driving is generally limited to short distances in an emission sensible urban environment. In the present situation with high cost electric storage and long charging duration hybridization is the key to enable electric driving. In comparison to the passenger car segment, where numerous manufacturers are already producing and offering different hybrid configurations for their premium class models, the two wheeler sector is not yet affected by this trend. The main reason for the retarded implementation of this new hybrid technology is its high system costs, as they cannot be covered by a reasonable product price. Especially for the two wheeler class L1e, with a maximum speed of 45 km/h and an engine displacement of less than 50 cm₃, the cost factor is highly important and decisive for its market acceptance, because the majority of vehicles are still low-cost products equipped with simple carbureted 2-stroke engines.
Technical Paper

Possibilities and Limits of 1D CFD Simulation Methodology for the Layout of 2-Stroke GDI Combustion System

2010-09-28
2010-32-0017
The development process of 2-stroke engines is characterized by limited CFD investigations in combination with long-term development phases on the test bench with high prototype costs. To reduce the costs and to realize shorter development time together with a higher prediction quality of the engine potential, a higher implementation level of 1D and 3D simulation tools into the development process is necessary. This publication outlines the 1D simulation methods in the layout phase of GDI combustion processes of 2-stroke engine categories. By means of conceptual investigations, the demands, the potential and the limits of 1D CFD simulation methodology are defined. Using a comparison between 1D and 3D or 1D/3D coupled simulation methods the limits of solely 1D simulation are shown. For advanced simulation tasks with a higher demand for prediction quality, the entire engine is simulated in 1D, whereas special parts of the engine design are simulated in a 3D model.
Technical Paper

Simulation Based Optimization of a Motorcycle Drive Train by the Integration of a Novel Continuously Variable Planetary Transmission

2017-11-05
2017-32-0071
Meeting upcoming emission limits such as EURO 5 with comparatively simple and low-cost vehicles will be very challenging. On the engine side, a big effort in terms of fuelling, combustion optimization as well as exhaust gas aftertreatment will be necessary without any doubt. Besides that, additional system optimization potential can be gained by a systematic adaptation of the drive train. One approach is to use a CVT (Continuously Variable Transmission) system to run engines in specific ranges with good fuel economy. However, existing belt driven CVTs show comparatively poor efficiencies. To overcome this drawback, the integration of a novel Continuously Variable Planetary Transmission (CVP), designed and developed by Fallbrook Technologies, was investigated in detail. For this purpose, a longitudinal dynamics simulation in Matlab-Simulink was carried out to compare a standard mass production vehicle drive train with several CVP setups.
Technical Paper

Simulation and experimental investigations of a direct-injection combustion system for high speed - high performance engines

2009-11-03
2009-32-0045
This publication presents the development of a GDI combustion system for high speed - high performance engines. The paper describes the development of the combustion process and its results, the development methodology, covering 1D and 3D CFD simulations, and shows extensive experimental investigations. With 3D CFD simulations the necessary deeper insights in the mixture preparation process of a homogenous GDI combustion system are gained. The findings of the simulation are transferred to an injection and combustion system for a 4-cylinder test engine. The results of the experimental investigations of the 4-cylinder engine equipped with GDI technology show the potential of GDI applications for high performance engines.
Technical Paper

Synthetic Engine Concept and Modularity for a 3-Wheeler

2008-01-09
2008-28-0001
Small engines in small lightweight vehicles represent a good compromise between performance, comfort and environmental-oriented design. This becomes an issue worldwide. In big cities, lightweight vehicles have a great potential and advantages with regard to these issues. To reduce emissions in some big cities, governmental regulation requests the local cars being operated on CNG (Compressed Natural Gas). This gives bi-fuel (petrol and CNG) or CNG-mono-fuel vehicles a chance [1, 2]. MAGNA STEYR designed a bi-fuel 3-wheeler concept car and carried out simulations to find a good compromise between small engine and good performance. Styling studies, lightweight base-frame studies and an engine concept was developed for a 3-wheeler, but a module system should allow a taxi or cargo variant for either a 3-wheeler or a 4-wheeler.
X