Refine Your Search

Topic

Author

Search Results

Journal Article

An Experimental Investigation of Dual-Fuel Combustion in a Light Duty Diesel Engine by In-Cylinder Blending of Ethanol and Diesel

2015-09-01
2015-01-1801
This study investigated dual-fuel operation with a light duty Diesel engine over a wide engine load range. Ethanol was hereby injected into the intake duct, while Diesel was injected directly into the cylinder. At low loads, high ethanol shares are critical in terms of combustion stability and emissions of unburnt hydrocarbons. As the load increases, the rates of heat release become problematic with regard to noise and mechanical stress. At higher loads, an advanced injection of Diesel was found to be beneficial in terms of combustion noise and emissions. For all tests, engine-out NOx emissions were kept within the EU-6.1 limit.
Journal Article

An Experimental Investigation on the Evaporation Characteristics of a Two-Component Fuel in Diesel-Like Sprays

2011-04-12
2011-01-0688
Tailor-made multi-component fuels are currently being developed for advanced Diesel engines. Accordingly, there is renewed interest in the detailed evaporation characteristics of such multi-component fuels, in particular because soot formation in reacting Diesel sprays generally depends on the mixture formation upstream of the lift-off location. It is also well established that fuel components with different volatility are generally not coevaporative due to fractional distillation in the mixture formation process of spark-ignition engines, but it is not clear if this holds for Diesel-like sprays, in which evaporation and mixing are expected to be more rapid. Unfortunately, little work has been done in this field, and some of the previous results appear to be contradictory. This paper presents a new laser diagnostic approach, which yields the vapor-phase concentrations of two fuel components simultaneously in Diesel-like sprays.
Journal Article

Analysis of the Effect of Bio-Fuels on the Combustion in a Downsized DI SI Engine

2011-08-30
2011-01-1991
In this study the fuel influence of several bio-fuel candidates on homogeneous engine combustion systems with direct injection is investigated. The results reveal Ethanol and 2-Butanol as the two most knock-resistant fuels. Hence these two fuels enable the highest efficiency improvements versus RON95 fuel ranging from 3.6% - 12.7% for Ethanol as a result of a compression ratio increase of 5 units. Tetrahydro-2-methylfuran has a worse knock resistance and a decreased thermal efficiency due to the required reduction in compression ratio by 1.5 units. The enleanment capability is similar among all fuels thus they pose no improvements for homogeneous lean burn combustion systems despite a significant reduction in NOX emissions for the alcohol fuels as a consequence of lower combustion temperatures.
Technical Paper

Analysis of the Effects of Certain Alcohol and Furan-Based Biofuels on Controlled Auto Ignition

2012-04-16
2012-01-1135
For gasoline engines controlled autoignition provides the vision of enabling the fuel consumption benefit of stratified lean combustion systems without the drawback of additional NOx aftertreatment. In this study the potential of certain biofuels on this combustion system was assessed by single-cylinder engine investigations using the exhaust strategy "combustion chamber recirculation" (CCR). For the engine testing sweeps in the internal EGR rate with different injection strategies as well as load sweeps were performed. Of particular interest was to reveal fuel differences in the achievable maximal load as well as in the NOx emission behavior. Additionally, experiments with a shock tube and a rapid compression machine were conducted in order to determine the ignition delay times of the tested biofuels concerning controlled autoignition-relevant conditions.
Journal Article

Analysis of the Emission Conversion Performance of Gasoline Particulate Filters Over Lifetime

2019-09-09
2019-24-0156
Gasoline particulate filters (GPF) recently entered the market, and are already regarded a state-of-the-art solution for gasoline exhaust aftertreatment systems to enable EU6d-TEMP fulfilment and beyond. Especially for coated GPF applications, the prognosis of the emission conversion performance over lifetime poses an ambitious challenge, which significantly influences future catalyst diagnosis calibrations. The paper presents key-findings for the different GPF application variants. In the first part, experimental GPF ash loading results are presented. Ash accumulates as thin wall layers and short plugs, but does not penetrate into the wall. However, it suppresses deep bed filtration of soot, initially decreasing the soot-loaded backpressure. For the emission calibration, the non-linear backpressure development complicates the soot load monitoring, eventually leading to compromises between high safety against soot overloading and a low number of active regenerations.
Technical Paper

Analysis of the Particle Size Distribution in the Cylinder of a Common Rail DI Diesel Engine During Combustion and Expansion

2000-06-19
2000-01-1999
In the recent years diesel engine developers and manufacturers achieved a great progress in reducing the most important diesel engine pollutants, NOX and particulates. But nevertheless big efforts in diesel engine development are necessary to meet with the more stringent future emission regulations. To improve the knowledge about particle formation and emission an insight in the cylinder is necessary. By using the fast gas sampling technique samples from the cylinder were taken as a function of crank angle and analyzed regarding the soot particle size distribution and the particle mass. The particle size distribution was measured by a conventional SMPS. Under steady state conditions the influence of aromatic and oxygen content in the fuel on in-cylinder particle size distribution and particle mass inside a modern 4V-CR-DI-diesel-engine were determined. After injection and ignition, mainly small soot particles were formed which grow and in the later combustion phase coagulate.
Journal Article

Assessment of the Full Thermodynamic Potential of C8-Oxygenates for Clean Diesel Combustion

2017-09-04
2017-24-0118
Within the Cluster of Excellence “Tailor-Made Fuels from Biomass” (TMFB) at the RWTH Aachen University, two novel biogenic fuels, namely 1-octanol and its isomer dibutyl ether (DBE), were identified and extensively analyzed in respect of their suitability for combustion in a Diesel engine. Both biofuels feature very different properties, especially regarding their ignitability. In previous works of the research cluster, promising synthesis routes with excellent yields for both fuels were found, using lignocellulosic biomass as source material. Both fuels were investigated as pure components in optical and thermodynamic single cylinder engines (SCE). For 1-octanol at lower part load, almost no soot emission could be measured, while with DBE the soot emissions were only about a quarter of that with conventional Diesel fuel. At high part load (2400 min-1, 14.8 bar IMEP), the soot reduction of 1-octanol was more than 50% and for DBE more than 80 % respectively.
Technical Paper

C8-Oxygenates for Clean Diesel Combustion

2014-04-01
2014-01-1253
Within this paper, the two possible alternative and biomass-based fuel candidates Di-n-butyl ether (DNBE) and 1-octanol are investigated with regard to their utilization in a diesel-type engine. In order to asses the fuels emission-reduction potential, both have been tested in a single cylinder engine (SCE) and a high pressure chamber (HPC) in comparison to conventional EN590 diesel at various load points. Due to its reduced reactivity 1-octanol features a longer ignition delay and thus higher degrees of homogenization at start of combustion, whereas DNBE ignites rather rapidly in both the HPC and the engine leading to a predominantly mixing controlled combustion. Thus, both fuels feature completely different combustion characteristics. However, compared to diesel, both fuels contribute to a significant reduction in Filter Smoke Number (FSN) up to a factor of 15.
Technical Paper

Combined Particulate Matter and NOx Aftertreatment Systems for Stringent Emission Standards

2007-04-16
2007-01-1128
The HSDI Diesel engine contributes substantially to the decrease of fleet fuel consumption thus to the reduction of CO2 emissions. This results in the rising market acceptance which is supported by desirable driving performance as well as greatly improved NVH behavior. In addition to the above mentioned requirements on driving performance, fuel economy and NVH behavior, continuously increasing demands on emissions performance have to be met. From today's view the Diesel particulate trap presents a safe technology to achieve the required reduction of the particle emission of more than 95%. However, according to today's knowledge a further, substantial NOx engine-out emission reduction for the Diesel engine is counteracts with the other goal of reduced fuel consumption. To comply with current and future emission standards, Diesel engines will require DeNOx technologies.
Technical Paper

Cooled EGR - A Must or an Option for 2002/04

2002-03-04
2002-01-0962
The introduction of the new emission standards in 2002/04 for heavy-duty diesel engines requires a substantial reduction of the NOx emissions while the particulate emissions remain on a constant level. The application of cooled EGR appears to be the most common approach in order to achieve the required target, although other means such as advanced combustion systems and the application of emission control devices to reduce NOx emissions have to be taken into account as well. The purpose of this study is to investigate the potential of such alternative solutions in comparison with cooled EGR to meet the upcoming emission standards.
Technical Paper

DPF Regeneration-Concept to Avoid Uncontrolled Regeneration During Idle

2004-10-26
2004-01-2657
Significant particulate emission reductions of diesel engines can be achieved using diesel particulate filters (DPFs). Ceramic wall flow filters with a PM efficiency of >90% have proven to be effective components in emission control. The challenge for the application lies with the development and adaptation of a reliable regeneration strategy. The main focus is emission efficiency over the legally required durability periods, as well as over the useful vehicle life. It will be shown, that new DPF systems are characterized by a high degree of integration with the engine management system, to allow for initiation of the regeneration and its control for optimum DPF protection. Using selected cases, the optimum combination and tuning will be demonstrated for successful regenerations, taking into account DPF properties.
Technical Paper

Development of a Diesel Passenger Car Meeting Tier 2 Emissions Levels

2004-03-08
2004-01-0581
Increasing fuel costs, the need to reduce dependence on foreign oil as well as the high efficiency and the desire for superior durability have caused the diesel engine to again become a prime target for light-duty vehicle applications in the United States. In support of this the U.S. Department of Energy (DOE) has engaged in a test project under the Advanced Petroleum Based Fuels-Diesel Emission Control (APBF-DEC) activity to develop a passenger car with the capability to demonstrate compliance with Tier 2 Bin 5 emission targets with a fresh emission control catalyst system. In order to achieve this goal, a prototype engine was installed in a passenger car and optimized to provide the lowest practical level of engine-out emissions.
Technical Paper

Gasoline Particulate Filter Characterization Focusing on the Filtration Efficiency of Nano-Particulates Down to 10 nm

2020-09-15
2020-01-2212
With Post Euro 6 emission standards in discussion, stricter particulate number (PN) targets as well as a decreased PN cut-off size from 23 to 10 nm are expected. Sub-23 nm particulates are considered particularly harmful to human health, but are not yet taken into account in the current vehicle certification process. Not considering sub-23 nm particulates during the development process could lead to significant additional efforts for Original Equipment Manufacturers (OEM) to comply with future Post Euro 6 PN emission limits. It is therefore essential to increase knowledge about the formation and filtration of particulates below 23 nm. In the present study, a holistic Gasoline Particulate Filter (GPF) characterization has been carried out on an engine test bench under varying boundary conditions and on a burner bench with a novel ash loading methodology.
Technical Paper

Glow-plug Ignition of Ethanol Fuels under Diesel Engine Relevant Thermodynamic Conditions

2011-04-12
2011-01-1391
The requirement of reducing worldwide CO₂ emissions and engine pollutants are demanding an increased use of bio-fuels. Ethanol with its established production technology can contribute to this goal. However, due to its resistive auto-ignition behavior the use of ethanol-based fuels is limited to the spark-ignited gasoline combustion process. For application to the compression-ignited diesel combustion process advanced ignition systems are required. In general, ethanol offers a significant potential to improve the soot emission behavior of the diesel engine due to its oxygen content and its enhanced evaporation behavior. In this contribution the ignition behavior of ethanol and mixtures with high ethanol content is investigated in combination with advanced ignition systems with ceramic glow-plugs under diesel engine relevant thermodynamic conditions in a high pressure and temperature vessel.
Journal Article

Impact of Biomass-Derived Fuels on Soot Oxidation and DPF Regeneration Behavior

2013-04-08
2013-01-1551
To comply with the new regulations on particulate matter emissions, the manufacturers of light-duty as well as heavy-duty vehicles more commonly use diesel particulate filters (DPF). The regeneration of DPF depends to a significant extent on the properties of the soot stored. Within the Cluster of Excellence "Tailor-Made Fuels from Biomass (TMFB)" at RWTH Aachen University, the Institute for Combustion Engines carried out a detailed investigation program to explore the potential of future biofuel candidates for optimized combustion systems. The experiments for particulate measurements and analysis were conducted on a EURO 6-compliant High Efficiency Diesel Combustion System (HECS) with petroleum-based diesel fuel as reference and a today's commercial biofuel (i.e., FAME) as well as a potential future biomass-derived fuel candidate (i.e., 2-MTHF/DBE). Thermo gravimetric analyzer (TGA) was used in this study to evaluate the oxidative reactivity of the soot.
Journal Article

Influence of Ethanol Blends on Low Speed Pre-Ignition in Turbocharged, Direct-Injection Gasoline Engines

2017-03-28
2017-01-0687
Modern combustion engines must meet increasingly higher requirements concerning emission standards, fuel economy, performance characteristics and comfort. Especially fuel consumption and the related CO2 emissions were moved into public focus within the last years. One possibility to meet those requirements is downsizing. Engine downsizing is intended to achieve a reduction of fuel consumption through measures that allow reducing displacement while simultaneously keeping or increasing power and torque output. However, to reach that goal, downsized engines need high brake mean effective pressure levels which are well in excess of 20bar. When targeting these high output levels at low engine speeds, undesired combustion events with high cylinder peak pressures can occur that can severely damage the engine. These phenomena, typically called low speed pre-ignition (LSPI), set currently an undesired limit to downsizing.
Technical Paper

Influence of Vehicle Operators and Fuel Grades on Particulate Emissions of an SI Engine in Dynamic Cycles

2018-04-03
2018-01-0350
With the implementation of the “Worldwide harmonized Light duty Test Procedure” (WLTP) and the highly dynamic “Real Driving Emissions” (RDE) tests in Europe, different engineering methodologies from virtual calibration approaches to Engine-in-the-loop (EiL) methods have to be considered to define and calibrate efficient exhaust gas aftertreatment technologies without the availability of prototype vehicles in early project phases. Since different types of testing facilities can be used, the effects of test benches as well as real and virtual vehicle operators have to be determined. Moreover, in order to effectively reduce harmful emissions, the reproducibility of test cycles is essential for an accurate and efficient application of exhaust gas aftertreatment systems and the calibration of internal combustion engines.
Technical Paper

Investigation of Spray-Bowl Interaction Using Two-Part Analysis in a Direct-Injection Diesel Engine

2010-04-12
2010-01-0182
The purpose of this study is to investigate the effect of spray-bowl interaction on combustion, and pollutants formation at one specific high-load point of a single-cylinder small-bore diesel engine through computational analysis. The simulations are performed using Representative Interactive Flamelet (RIF) model with detailed chemical kinetics. Detailed chemistry-based soot model is used for the prediction of soot emissions. The simulations are performed for five different injection timings. Model-predicted cylinder pressure and exhaust emissions are validated against the measured data for all the injection timings. A new method - Two-part analysis - is then applied to investigate the spray-bowl interaction. Two-part analysis splits the volume of the combustion chamber into two, namely the piston bowl and the squish volume. Through analysis, among others the histories of soot, carbon monoxide (CO) and nitric oxide (NO ) emissions inside both volumes are shown.
Journal Article

Laser-Induced Incandescence Measurements of Tailor-Made Fuels in an Optical Single-Cylinder Diesel Engine

2017-03-28
2017-01-0711
The influence of two oxygenated tailor-made fuels on soot formation and oxidation in an optical single cylinder research diesel engine has been studied. For the investigation a planar laser-induced incandescence (PLII) measurement technique was applied to the engine in order to detect and evaluate the planar soot distribution for the two bio fuels within a laser light sheet. Furthermore the OH* chemiluminescence and broad band soot luminosity was visualized by high speed imaging to compare the ignition and combustion behavior of tested fuels: Two C8 oxygenates, di-n-butylether (DNBE) and 1-octanol. Both fuels have the same molecular formula but differ in their molecular structure. DNBE ignites fast and burns mostly diffusive while 1-octanol has a low cetane number and therefore it has a longer ignition delay but a more homogeneous mixture at time of ignition. The two bio fuels were finally compared to conventional diesel fuel.
Technical Paper

Numerical Analysis of Mixing of Bio-Hybrid Fuels in a Direct Injection Engine with a Pre-Chamber Ignition System

2024-04-09
2024-01-2619
Numerical analyses of the liquid fuel injection and subsequent fuel-air mixing for a high-tumble direct injection engine with an active pre-chamber ignition system at operation conditions of 2000 RPM are presented. The Navier-Stokes equations for compressible in-cylinder flow are solved numerically using a hierarchical Cartesian mesh based finite-volume method. To determine the fuel vapor before ignition large-eddy flow simulations are two-way coupled with the spray droplets in a Lagrangian Particle Tracking (LPT) formulation. The combined hierarchical Cartesian mesh ensures efficient usage of high performance computing systems through solution adaptive refinement and dynamic load balancing. Computational meshes with approximately 170 million cells and 1.0 million spray parcels are used for the simulations.
X