Refine Your Search

Topic

Author

Search Results

Standard

3GCN - SEAT DISTRIBUTION SYSTEM

2014-08-15
CURRENT
ARINC809-3
This specification defines general architectural philosophy and specific design guidance for the proper installation and interface of various cabin equipment within the seats. Consistency with this specification allows each component installed on the seat to operate in concert when integrated with other relevant cabin type equipment. Standard electrical and mechanical interfaces of the In- Flight Entertainment System (IFES) equipment for the 3rd Generation Cabin Network (3GCN) associated with the seat are defined. This equipment consists of the headphone jacks (HPJ), passenger control unit (PCU)/multi function handset (including the cord), seat video display (SVD), remote data outlet (RDO), integrated seat box (ISB) which includes the seat power box (SPB)/seat data box (SDB), remote power outlet (RPO), and in-seat cables. Appropriate definitions are also provided for other electrical devices associated with the seat control/position mechanism.
Standard

8000 psi Hydraulic Systems: Experience and Test Results

2004-03-18
HISTORICAL
AIR4002
Shortly after World War II, as aircraft became more sophisticated and power-assist, flight-control functions became a requirement, hydraulic system operating pressures rose from the 1000 psi level to the 3000 psi level found on most aircraft today. Since then, 4000 psi systems have been developed for the U.S. Air Force XB-70 and B-1 bombers and a number of European aircraft including the tornado multirole combat aircraft and the Concorde supersonic transport. The V-22 Osprey incorporates a 5000 psi hydraulic system. The power levels of military aircraft hydraulic systems have continued to rise. This is primarily due to higher aerodynamic loading, combined with the increased hydraulic functions and operations of each new aircraft. At the same time, aircraft structures and wings have been getting smaller and thinner as mission requirements expand. Thus, internal physical space available for plumbing and components continues to decrease.
Standard

8000 psi Hydraulic Systems: Experience and Test Results

2012-11-15
CURRENT
AIR4002A
Shortly after World War II, as aircraft became more sophisticated and power-assist, flight-control functions became a requirement, hydraulic system operating pressures rose from the 1000 psi level to the 3000 psi level found on most aircraft today. Since then, 4000 psi systems have been developed for the U.S. Air Force XB-70 and B-1 bombers and a number of European aircraft including the tornado multirole combat aircraft and the Concorde supersonic transport. The V-22 Osprey incorporates a 5000 psi hydraulic system. The power levels of military aircraft hydraulic systems have continued to rise. This is primarily due to higher aerodynamic loading, combined with the increased hydraulic functions and operations of each new aircraft. At the same time, aircraft structures and wings have been getting smaller and thinner as mission requirements expand. Thus, internal physical space available for plumbing and components continues to decrease.
Standard

A DYNAMIC TEST METHOD FOR DETERMINING THE DEGREE OF CLEANLINESS OF THE DOWNSTREAM SIDE OF FILTER ELEMENTS

1996-05-01
HISTORICAL
ARP599
This test method describes a procedure for determining the insoluble contamination level of the downstream side of filter elements. Results of this procedure are intended to be used only for evaluation of the effectiveness of various cleaning treatments, or cleanliness of element as received from manufacturers. The data obtained by this procedure do not necessarily indicate, qualitatively or quantitatively, the contamination which may be released by a filter element into a fluid during service use. Because of the wide variety of conditions which may exist in service applications, it is recommended that the user design and conduct his own particular service performance test. (See paragraph 10.1).
Standard

A Guide for the Selection of Quick-Disconnect Couplings for Aerospace Fluid Systems

2013-01-02
HISTORICAL
AIR1047D
The factors involved in the selection of a quick-disconnect are grouped into the following classifications for the purpose of discussion: a Functional considerations. b Weight considerations. c Environmental performance factors. d End fitting types. e Additional considerations. A quick-disconnect coupling as used in this AIR is one that can be rapidly and repetitively connected and disconnected without excessive fluid loss. The relative importance of the design factors depends upon the fluid medium of the particular system in which quick-disconnect is to be used. The effect of the fluid media on each factor is discussed in this report where applicable.
Standard

A Guide for the Selection of Quick-Disconnect Couplings for Aerospace Fluid Systems

2020-03-10
CURRENT
AIR1047E
The factors involved in the selection of a quick-disconnect are grouped into the following classifications for the purpose of discussion: a Functional considerations. b Weight considerations. c Environmental performance factors. d End fitting types. e Additional considerations. A quick-disconnect coupling as used in this AIR is one that can be rapidly and repetitively connected and disconnected without excessive fluid loss. The relative importance of the design factors depends upon the fluid medium of the particular system in which quick-disconnect is to be used. The effect of the fluid media on each factor is discussed in this report where applicable.
Standard

A Methodology for Quantifying the Performance of an Engine Monitoring System

2017-10-13
HISTORICAL
AIR4985
The purpose of this SAE Aerospace Information Report (AIR) is to present a quantitative approach for evaluating the performance and capabilities of an Engine Monitoring System (EMS). The value of such a methodology is in providing a systematic means to accomplish the following: 1 Determine the impact of an EMS on key engine supportability indices such as Fault Detection Rate, Fault Isolation Rate, Mean Time to Diagnose, In-flight Shutdowns (IFSD), Mission Aborts, and Unscheduled Engine Removals (UERs). 2 Facilitate trade studies during the design process in order to compare performance versus cost for various EMS design strategies, and 3 Define a “common language” for specifying EMS requirements and the design features of an EMS in order to reduce ambiguity and, therefore, enhance consistency between specification and implementation.
Standard

A Review of Literature on the Relationship Between Gas Turbine Engine Lubricants and Aircraft Cabin Air Quality

2016-09-12
CURRENT
AIR5784
There has been a recent upsurge in interest from the media concerning the quality of the environment within aircraft cabins and cockpits especially in the commercial world1-4. This has included (although by no means been limited to) the air quality, with particular reference to the alleged effects of contamination from the aircraft turbine lubricant. Possible exposure to ‘organophosphates’ (OPs) from the oil has raised special concerns from cabin crew. Such is the concern that government organisations around the world, including Australia, USA and UK, have set up committees to investigate the cabin air quality issue. Concern was also voiced in the aviation lubricants world at the way in which OP additives in turbine lubricants were being blamed in some reports for the symptoms being experienced by air crew and passengers. SAE Committee E-34 therefore decided that it should gather as much available information on the subject as possible.
Standard

A Review of Literature on the Relationship Between Gas Turbine Engine Lubricants and Aircraft Cabin Air Quality

2021-03-25
WIP
AIR5784A
There has been a recent upsurge in interest from the media concerning the quality of the environment within aircraft cabins and cockpits especially in the commercial world. This has included (although by no means been limited to) the air quality, with particular reference to the alleged effects of contamination from the aircraft turbine lubricant. Possible exposure to 'organophosphates' (OPs) from the oil has raised special concerns from cabin crew. Such is the concern that government organisations around the world, including Australia, USA and UK, have set up committees to investigate the cabin air quality issue. Concern was also voiced in the aviation lubricants world at the way in which OP additives in turbine lubricants were being blamed in some reports for the symptoms being experienced by air crew and passengers. SAE Committee E-34 therefore decided that it should gather as much available information on the subject as possible.
Standard

A/C Compressor Oil Separator Effectiveness Test Standard

2019-07-15
CURRENT
J3112_201907
This SAE Standard establishes the test conditions and reporting method for quantifying refrigerant circuit oil circulation rate (OCR) reduction effectiveness of mobile air conditioning compressors using R-134a and R-1234yf refrigerants that include oil separators and/or other design features for the purpose of reducing the OCR in the refrigerant circuit. This standard and the OCR values it produces are not intended to make judgement on suitability of OCR values with regard to compressor durability.
Standard

A/C Compressor Oil Separator Effectiveness Test Standard

2017-03-07
HISTORICAL
J3112_201703
This SAE Standard establishes the test conditions and reporting method for quantifying refrigerant circuit oil circulation rate (OCR) reduction effectiveness of mobile air conditioning compressors using R-134a and R-1234yf refrigerants that include oil separators and/or other design features for the purpose of reducing the OCR in the refrigerant circuit.
Standard

ABBREVIATIONS AND ACRONYMS FOR USE ON THE FLIGHT DECK

1992-07-01
HISTORICAL
ARP4105A
This document is intended to establish preferred abbreviations for terms used on panels, controls, displays, instruments, placards, and markings. The recommendations apply to equipment used by crew members in the flight deck of transport aircraft. The abbreviations, acronyms, and symbols do not supersede those used in airworthiness regulations or aeronautical charts or other aircraft documents.
Standard

ACCELERATED EXPOSURE OF AUTOMOTIVE INTERIOR TIRM COMPONENTS USING A CONTROLLED IRRADIANCE WATER COOLED XENON-ARC APPARATUS

1992-03-01
HISTORICAL
J1885_199203
This test method specifies the operating procedures for a controlled irradiance, water cooled xenon-arc apparatus used for the accelerated exposure of various automotive interior trim components. Test durations, as well as any exceptions to the sample preparation and performance evaluation procedures contained in this document, are covered in material specifications of the different automotive manufacturers.
X