Refine Your Search

Topic

Author

Search Results

Viewing 1 to 20 of 19960
Standard

1000BASE-T1 Un-Shielded and Shielded Balanced Single Twisted Pair Ethernet Cable

2021-11-03
HISTORICAL
J3117/2_202111
This standard covers un-shielded (JUTP) and shielded (STP) balanced single twisted pair jacketed data cable intended for use in surface vehicle cables for 1 Gb/s ethernet applications. The tests in this standard are intended to qualify cables for normal operation in an automotive environment while maintaining the necessary electrical properties for reliable data transmission.
Standard

1000BASE-T1 Un-Shielded and Shielded Balanced Single Twisted Pair Ethernet Cable

2022-09-30
CURRENT
J3117/2_202209
This standard covers un-shielded (JUTP) and shielded (STP) balanced single twisted pair jacketed data cable intended for use in surface vehicle cables for 1000BASE-T1 ethernet PHY (1 Gb/s) applications. The tests in this standard are intended to qualify cables for normal operation in an automotive environment while maintaining the necessary electrical properties for reliable data transmission.
Standard

100BASE-T1 Un-Shielded Balanced Single Twisted Pair Ethernet Cable

2023-01-17
CURRENT
J3117/1_202301
This SAE Standard covers un-shielded balanced single twisted pair data cable intended for use in surface vehicle cables for ≤100 Mb/s Ethernet applications. The tests in this document are intended to qualify cables for normal operation in an automotive environment while maintaining the necessary electrical properties for reliable data transmission.
Standard

15 Pole Connector Between Towing Vehicles and Trailers with 12 Volt Nominal Supply

2018-04-15
HISTORICAL
J2691_201804
This SAE standard establishes the minimum construction and performance requirements for a 15 Pole Connector Between Towing Vehicles and Trailers, for trucks, trailers, and dollies in conjunction with SAE J2742. The connector accommodates both power and ISO 11992-1 signal circuits along with dual ground wires to accommodate grounding requirements within the constraints of the SAE J2691 terminal capacity.
Standard

15 Pole Connector Between Towing Vehicles and Trailers with 12 Volt Nominal Supply

2013-04-09
HISTORICAL
J2691_201304
This SAE standard establishes the minimum construction and performance requirements for a 15 Pole Connector Between Towing Vehicles and Trailers, for trucks, trailers, and dollies in conjunction with SAE J2742 “Combination 11 Conductors and 4 Pairs ECBS Cable”. The connector accommodates both power and ISO 11992-1 signal circuits along with dual ground wires to accommodate grounding requirements within the constraints of the SAE J2691 terminal capacity.
Standard

15 Pole Connector Between Towing Vehicles and Trailers with 12 Volt Nominal Supply

2020-02-25
CURRENT
J2691_202002
This SAE Standard establishes the minimum construction and performance requirements for a 15 pole connector between towing vehicles and trailers, for trucks, trailers, and dollies, for 12 VDC nominal applications in conjunction with SAE J2742. The connector accommodates both power and ISO 11992-1 signal circuits along with dual ground wires to accommodate grounding requirements within the constraints of the SAE J2691 terminal capacity.
Standard

1995 Certified Power Engine Data for Kawasaki FX801V as used in 2017 General Purpose Engines - Level 2

2016-10-14
CURRENT
CPKW2_17FX801V
This product includes information on the manufacturer, engine, applications, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds. In addition, this product contains complete engine information such as displacement, cylinder configuration, valve train, combustion cycle, pressure charging, charge air cooling, bore, stroke, cylinder numbering convention, firing order, compression ratio, fuel system, fuel system pressure, ignition system, knock control, intake manifold, exhaust manifold, cooling system, coolant liquid, thermostat, cooling fan, lubricating oil, fuel, fuel shut off speed, etc. Also included are all measured test parameters outlined in J2723.
Standard

32 Bit Binary CL (BCL) and 7 Bit ASCII CL (ACL) Exchange Input Format for Numerically Controlled Machines

2016-05-31
CURRENT
EIA494B
The scope of this Standard is the definition of the response of a numerically controlled machine to a valid sequence of records made up of 32 bit binary words or ASCII text strings. The Standard defines the structure of these records and of the 32 bit binary words or ASCII text strings which make up the records. This standard addresses the control of machines capable of performing 2, 3, 4, and 5 axis motion of an active tool (mill, laser, pen, etc.) relative to a part, and those capable of 2 and 4 axis tool motion relative to a rotating part (turning machines), including parallel tool slide sets capable of concurrent (merged) motion.
Standard

400 Hz CONNECTION AIRCRAFT ELECTRICAL MAINTENANCE PROCEDURES

1994-12-01
HISTORICAL
AIR4365
This SAE Aerospace Information Report (AIR) describes field-level procedures to determine if 400 Hz electrical connections for external power may have been subjected to excessive wear, which may result in inadequate disengagement forces.
Standard

400 Hz Connection Aircraft Electrical Maintenance Procedures

2008-03-28
HISTORICAL
AIR4365A
This SAE Aerospace Information Report (AIR) describes field-level procedures to determine if 400 Hz electrical connections for external power may have been subjected to excessive wear, which may result in inadequate disengagement forces.
Standard

400-CYCLE GROUND POWER UNIT PROVISIONS FOR AIRCRAFT ELECTRICAL SYSTEM PROTECTION

2002-12-16
CURRENT
ARP760
This SAE Recommended Practice which defines the terms and tabulates the limits of the characteristics for various protective devices used in conjunction with 400-cycle ground power for civil aircraft is intended to assist the airlines in standardizing on 400-cycle protective systems. The limits found to be acceptable in the civil aircraft industry are presented.
Standard

8000 psi Hydraulic Systems: Experience and Test Results

2004-03-18
HISTORICAL
AIR4002
Shortly after World War II, as aircraft became more sophisticated and power-assist, flight-control functions became a requirement, hydraulic system operating pressures rose from the 1000 psi level to the 3000 psi level found on most aircraft today. Since then, 4000 psi systems have been developed for the U.S. Air Force XB-70 and B-1 bombers and a number of European aircraft including the tornado multirole combat aircraft and the Concorde supersonic transport. The V-22 Osprey incorporates a 5000 psi hydraulic system. The power levels of military aircraft hydraulic systems have continued to rise. This is primarily due to higher aerodynamic loading, combined with the increased hydraulic functions and operations of each new aircraft. At the same time, aircraft structures and wings have been getting smaller and thinner as mission requirements expand. Thus, internal physical space available for plumbing and components continues to decrease.
Standard

8000 psi Hydraulic Systems: Experience and Test Results

2012-11-15
CURRENT
AIR4002A
Shortly after World War II, as aircraft became more sophisticated and power-assist, flight-control functions became a requirement, hydraulic system operating pressures rose from the 1000 psi level to the 3000 psi level found on most aircraft today. Since then, 4000 psi systems have been developed for the U.S. Air Force XB-70 and B-1 bombers and a number of European aircraft including the tornado multirole combat aircraft and the Concorde supersonic transport. The V-22 Osprey incorporates a 5000 psi hydraulic system. The power levels of military aircraft hydraulic systems have continued to rise. This is primarily due to higher aerodynamic loading, combined with the increased hydraulic functions and operations of each new aircraft. At the same time, aircraft structures and wings have been getting smaller and thinner as mission requirements expand. Thus, internal physical space available for plumbing and components continues to decrease.
Standard

9100 품질관리시스템 내 AQAP 2110 적용에 관한 지침

2024-02-16
CURRENT
IA9137_KOKR
이 문서는 공급자가 9100의 조항을 준수하고자 할 때 AQAP-2110을 적용하는 것에 관한 정보와 지침을 제공하기 위해 작성 및 발행된 것이다. 이 문서는 AQAP-2110-SRD.2 및 IA9137로 간행된다. 이는 NATO와 산업계에서 AQAP-2110과 9100 간의 관계에 대한 이해와 활용을 촉진하기 위해 NATO와 산업계 대표들이 공동으로 작성한 것이다. 획득 국가가 자국의 조달 방법으로 대외군사판매(FMS)를 이용할 때는 AQAP가 필요할 수 있다. 이 문서는 획득 국가와 9100을 준수하고자 하는 공급 국가의 AQAP-2110 요구사항 해석에 있어 공통성을 제공하는 데에 목적을 두고 있다. 이 문서의 내용은 법적 또는 계약상의 지위를 갖지 않으며, 일체의 AQAP-2110 또는 9100 요구사항을 대체하거나 그 요구사항에 추가되는 것도 아니다. 있을 수 있는 조건의 다양성(작업 또는 공정의 유형, 사용 기기 및 관련 인원의 역량에 따르는) 때문에, 이 지침이 모든 것에 적용되는 것으로 간주하거나, 계약 요구사항 충족에 필요한 특정 수단 또는 방법을 강요하는 것으로 간주해서는 안 된다. 이해당사자들은 이러한 요구사항을 충족하기 위해 다른 수단 또는 방법을 사용할 수도 있다는 점을 알고 있어야 한다. 이 지침 사용자는 계약서에 명시되는 바와 같이 AQAP 2110 요구사항이 공급자와 하청업체가 지켜야 하는 의무사항임을 명심해야 한다.
Standard

9100品質マネジメントシステムにおけるAQAP 2110の適用に関するガイダンス

2024-02-16
CURRENT
IA9137_JA
この文書は、供給者が9100の規定を遵守する場合の、AQAP-2110の適用に関する情報及びガイダンスを提供するために作成され、発行された。この文書は、AQAP-2110-SRD.2及びIA9137として発行されている。この文書は、NATO及び業界によるAQAP-2110及び9100の関係の理解及び利用を容易にするために、NATO及び業界の代表者が協同で策定した。AQAPは、調達国が対外有償軍事援助(FMS)を調達手段として利用する場合に、必要となる場合がある。 この文書の目的は、調達者及びその9100供給者によるAQAP-2110要求事項の解釈の共通化に寄与することである。 この文書の内容は法的位置づけも契約上の位置づけも有せず、AQAP-2110の要求事項又は9100の要求事項のいずれに対しても取って代わるものでも、追加するものでも、削除するものでもない。 様々な状況が、作業、工程の種類、又は使用される機器、及び関わる要員のスキルのような要因に左右されて存在し得るため、このガイダンスは網羅的なものと見なされることも、また、契約書の要求事項を満たすための特定の手段や方法を義務付けるものと見なされることも望ましくない。ステークホルダーは、これらの要求事項を満たすために、他の手段や方法が使用され得ることを認識すべきである。 このガイダンスの利用者は、AQAP 2110要求事項が、契約書に引用されているとおり、供給者や二次供給者に義務付けられていることに留意することが望ましい。
X