Refine Your Search

Topic

Search Results

Standard

Automotive Austempered Ductile (Nodular) Iron Castings (ADI)

2018-01-09
CURRENT
J2477_201801
This SAE Standard covers the mechanical and physical property requirements for Austempered Ductile Iron (ADI) castings used in automotive and allied industries. Specifically covered are: a Hardness b Tensile Strength c Yield Strength d Elongation e Modulus of Elasticity f Impact Energy g Microstructure In this document SI units are primary and in-lb units are derived. Appendix A provides general information and related resources on the microstructural, chemical and heat treatment requirements to meet the mechanical properties needed for ADI in particular service conditions and applications.
Standard

Automotive Austempered Ductile (Nodular) Iron Castings (ADI)

2004-05-26
HISTORICAL
J2477_200405
This SAE Standard covers the mechanical and physical property requirements for Austempered Ductile Iron (ADI) castings used in automotive and allied industries. Specifically covered are: a Hardness b Tensile Strength c Yield Strength d Elongation e Modulus of Elasticity f Impact Energy g Microstructure In this document SI units are primary and in-lb units are derived. Appendix A provides general information and related resources on the microstructural, chemical and heat treatment requirements to meet the mechanical properties needed for ADI in particular service conditions and applications.
Standard

Automotive Compacted Graphite Iron Castings

2007-12-17
HISTORICAL
J1887_200712
This SAE Standard covers the mechanical and physical requirements for Compacted Graphite Iron (CGI) castings used in automotive and allied industries. Requirements in this document include: a Tensile Strength b Yield Strength c Elongation d Graphite Morphology
Standard

Automotive Compacted Graphite Iron Castings

2018-02-15
CURRENT
J1887_201802
This SAE Standard covers the mechanical and physical requirements for Compacted Graphite Iron (CGI) castings used in automotive and allied industries. Requirements in this document include: a Tensile Strength b Yield Strength c Elongation d Graphite Morphology
Standard

Automotive Ductile (Nodular) Iron Castings

2017-12-20
CURRENT
J434_201712
This SAE standard covers the minimum mechanical properties measured on separately cast test pieces of varying thickness and microstructural requirements for ductile iron castings used in automotive and allied industries. Castings may be specified in the as-cast or heat-treated condition. If castings are heat-treated, prior approval from the customer is required. The appendix provides general information on chemical composition, microstructure and casting mechanical properties, as well as other information for particular service conditions. In this standard SI units are primary and in-lb units are derived.
Standard

Automotive Ductile (Nodular) Iron Castings

2004-02-17
HISTORICAL
J434_200402
This SAE standard covers the minimum mechanical properties measured on separately cast test pieces of varying thickness and microstructural requirements for ductile iron castings used in automotive and allied industries. Castings may be specified in the as-cast or heat-treated condition. If castings are heat-treated, prior approval from the customer is required. The appendix provides general information on chemical composition, microstructure and casting mechanical properties, as well as other information for particular service conditions. In this standard SI units are primary and in-lb units are derived.
Standard

Automotive Ductile Iron Castings for High Temperature Applications

2004-06-15
HISTORICAL
J2582_200406
This SAE Standard covers the hardness, chemical analysis and microstructural requirements for ductile iron castings intended for high temperature service in automotive and allied industries. Commonly known as SiMo ductile iron, typical applications are in piston-engine exhaust manifolds and turbocharger parts. Castings may be specified in the as-cast or heat treated condition. For design purposes, the Appendix provides general information on the application of high temperature ductile iron castings, their processing conditions, chemical composition, mechanical properties and microstructure.
Standard

Automotive Ductile Iron Castings for High Temperature Applications

2018-01-09
CURRENT
J2582_201801
This SAE Standard covers the hardness, chemical analysis and microstructural requirements for ductile iron castings intended for high temperature service in automotive and allied industries. Commonly known as SiMo ductile iron, typical applications are in piston-engine exhaust manifolds and turbocharger parts. Castings may be specified in the as-cast or heat treated condition. For design purposes, the Appendix provides general information on the application of high temperature ductile iron castings, their processing conditions, chemical composition, mechanical properties and microstructure.
Standard

Automotive Gray Iron Castings

2000-12-06
HISTORICAL
J431_200012
This SAE Standard covers the hardness, tensile strength, and microstructure and special requirements of gray iron sand molded castings used in the automotive and allied industries. Specific requirements are provided for hardness of castings. Test bar tensile strength/Brinell hardness (t/h) ratio requirements are provided to establish a consistent tensile strength-hardness relationship for each grade to facilitate prediction and control of tensile strength in castings. Provision is made for specification of special additional requirements of gray iron automotive castings where needed for particular applications and service conditions. NOTE—This document was revised in 1993 to provide grade specific t/h control. In 1999 the document was revised to make SI metric units primary.
Standard

Automotive Gray Iron Castings

2018-01-09
CURRENT
J431_201801
This SAE Standard covers the hardness, tensile strength, and microstructure and special requirements of gray iron sand molded castings used in the automotive and allied industries. Specific requirements are provided for hardness of castings. Test bar tensile strength/Brinell hardness (t/h) ratio requirements are provided to establish a consistent tensile strength-hardness relationship for each grade to facilitate prediction and control of tensile strength in castings. Provision is made for specification of special additional requirements of gray iron automotive castings where needed for particular applications and service conditions. NOTE—This document was revised in 1993 to provide grade specific t/h control. In 1999 the document was revised to make SI metric units primary.
Standard

Automotive Malleable Iron Castings

2003-04-11
CURRENT
J158_200304
This standard covers the hardness and microstructural requirements for malleable iron castings - ferritic, pearlitic, tempered pearlitic, and tempered martensitic grades used in automotive and allied industries. Castings shall be heat treated to meet this SAE Standard. The Appendix provides general information on the application of malleable iron castings and their chemical composition to meet hardness, microstructure, and other properties needed for particular service conditions. The mechanical properties in the Appendix are provided for design purposes. The specific grades, hardness range, and final heat treatment are shown in Table 1.
Standard

Automotive Steel Castings

2007-12-17
HISTORICAL
J435_200712
This SAE Standard defines the specifications for steel castings used in the automotive and allied industries.
Standard

Automotive Steel Castings

2018-01-10
CURRENT
J435_201801
This SAE Standard defines the specifications for steel castings used in the automotive and allied industries.
Standard

CASE HARDENABILITY OF CARBURIZED STEELS

1997-11-01
CURRENT
J1975_199711
This SAE Information Report summarizes the characteristics of carburized steels and factors involved in controlling hardness, microstructure, and residual stress. Methods of determining case hardenability are reviewed, as well as methods to test for freedom from non-martensitic structures in the carburized case. Factors influencing case hardenability are also reviewed. Methods of predicting case hardenability are included, with examples of calculations for several standard carburizing steels. A bibliography is included in 2.2. The references provide more detailed information on the topics discussed in this document.
Standard

CAST COPPER ALLOYS

1981-09-01
HISTORICAL
J462_198109
This standard prescribes the chemical and mechanical requirements for a wide range of copper base casting alloys used in the automotive industry. It is not intended to cover ingot. (ASTM B30 is suggested for this purpose.)
Standard

CAST COPPER ALLOYS

1974-10-01
HISTORICAL
J462B_197410
This standard prescribes the chemical and mechanical requirements for a wide range of copper, base casting alloys used in the automotive industry. It is not intended to cover ingot. (ASTM B30 is suggested for this purpose.)
Standard

CAST COPPER ALLOYS

1971-07-01
HISTORICAL
J462A_197107
This standard prescribes the chemical and mechanical requirements for a wide range of copper base casting alloys used in the automotive industry. It is not intended to cover ingot. (ASTM B 30 is suggested for this purpose.)
Standard

Cast Copper Alloys

2018-01-09
CURRENT
J462_201801
This standard prescribes the chemical and mechanical requirements for a wide range of copper base casting alloys used in the automotive industry. It is not intended to cover ingot. (ASTM B30 is suggested for this purpose.)
Standard

ELECTROPLATE REQUIREMENTS FOR DECORATIVE CHROMIUM DEPOSITS ON ZINC BASE MATERIALS USED FOR EXTERIOR ORNAMENTATION

1991-06-01
HISTORICAL
J1837_199106
This SAE Standard covers the physical and performance requirements for electrodeposited copper, nickel, and chromium deposits on exterior ornamentation fabricated from die cast zinc alloys (SAE J468 alloys 903 and 925), and wrought zinc strip (ASTM B 69). This type of coating is designed to provide a high degree of corrosion resistance for automotive, truck, marine, and farm usage where a bright, decorative finish is desired.
Standard

ELEVATED TEMPERATURE PROPERTIES OF CAST IRONS

1988-05-01
HISTORICAL
J125_198805
The purpose of this SAE Information Report is to provide automotive engineers and designers with a concise statement of the basic characteristics of cast iron under elevated temperature conditions. As such, the report concentrates on general statements regarding these properties with limited illustrative data, anticipating that those who may be interested in more detail will want to use the bibliography provided at the conclusion of the report.
X