Refine Your Search

Topic

Author

Search Results

Viewing 1 to 20 of 12037
Standard

350 °F Autoclave Cure, Low Flow Toughened Epoxy Prepregs, Type 35, Class 1, Grade 190, Fiber 1

2019-03-12
WIP
AMS3961/3A
The intent of this specification is for the procurement of the material listed on the QPL and, therefore, no qualification or equivalency threshold values are provided. Users that intend to conduct a new material qualification or equivalency program shall refer to the Quality Assurance section of the base specification, AMS3961. All material qualification and equivalency data has been archived and is available for review upon request. Contact the CMH-17 Secretariat (www.cmh17.org) for additional information.
Standard

350 °F Autoclave Cure, Low Flow Toughened Epoxy Prepregs, Type 35, Class 1, Grade 190, Fiber 1

2015-12-02
CURRENT
AMS3961/3
The intent of this specification is for the procurement of the material listed on the QPL and, therefore, no qualification or equivalency threshold values are provided. Users that intend to conduct a new material qualification or equivalency program shall refer to the Quality Assurance section of the base specification, AMS3961. All material qualification and equivalency data has been archived and is available for review upon request. Contact the CMH-17 Secretariat (www.cmh17.org) for additional information.
Standard

350 °F Autoclave Cure, Low Flow Toughened Epoxy Prepregs, Type 35, Class 1, Grade 190, Fiber 2

2015-12-02
CURRENT
AMS3961/2
The intent of this specification is for the procurement of the material listed on the QPL and, therefore, no qualification or equivalency threshold values are provided. Users that intend to conduct a new material qualification or equivalency program shall refer to the Quality Assurance section of the base specification, AMS3961. All material qualification and equivalency data has been archived and is available for review upon request. Contact the CMH-17 Secretariat (www.cmh17.org) for additional information.
Standard

350 °F Autoclave Cure, Low Flow Toughened Epoxy Prepregs, Type 35, Class 1, Grade 190, Fiber 2

2019-03-12
WIP
AMS3961/2A
The intent of this specification is for the procurement of the material listed on the QPL and, therefore, no qualification or equivalency threshold values are provided. Users that intend to conduct a new material qualification or equivalency program shall refer to the Quality Assurance section of the base specification, AMS3961. All material qualification and equivalency data has been archived and is available for review upon request. Contact the CMH-17 Secretariat (www.cmh17.org) for additional information.
Standard

350 °F Autoclave Cure, Low Flow Toughened Epoxy Prepregs, Type 38, Class 2, Grade 193, Style 3K-70-PW, Fiber 1

2015-12-02
CURRENT
AMS3961/1
The intent of this specification is for the procurement of the material listed on the QPL and, therefore, no qualification or equivalency threshold values are provided. Users that intend to conduct a new material qualification or equivalency program shall refer to the Quality Assurance section of the base specification, AMS3961. All material qualification and equivalency data has been archived and is available for review upon request. Contact the CMH-17 Secretariat (www.cmh17.org) for additional information.
Standard

350 °F Autoclave Cure, Low Flow Toughened Epoxy Prepregs, Type 38, Class 2, Grade 193, Style 3K-70-PW, Fiber 1

2019-03-12
WIP
AMS3961/1A
The intent of this specification is for the procurement of the material listed on the QPL and, therefore, no qualification or equivalency threshold values are provided. Users that intend to conduct a new material qualification or equivalency program shall refer to the Quality Assurance section of the base specification, AMS3961. All material qualification and equivalency data has been archived and is available for review upon request. Contact the CMH-17 Secretariat (www.cmh17.org) for additional information.
Standard

A Current Assessment of Combining Distortion Types

2019-07-22
WIP
AIR9975
This document will address techniques or methods that have been used within the industry to address the problem of engine stability margin accounting when combinations of distortion types exist in an aircraft installation. Its focus is combining temperature, planar wave, and swirl distortion with time-variant spatial total pressure distortion. Example methodologies will be presented along with example cases where co-existing distortions have been evaluated. It will also address the areas where the industries' knowledge base is lacking (experimental data or computational methods) and the future work that is needed for methodology development in these areas. This document is viewed to be updated every five years as more information (data either experimentally or analytically) becomes available.
Standard

A Graphical Model for Interactive Distributed Control

2007-07-19
CURRENT
J2356_200707
The demonstrated architectural model and associated graphical techniques defined herein were developed to provide a simple method of visualizing the general functional operation or behavior of a Distributed Embedded System with a strong emphasis on representing system time characteristics.
Standard

A Methodology for Assessing Inlet Swirl Distortion

2022-03-07
CURRENT
AIR5686
This Aerospace Information Report (AIR) addresses the subject of aircraft inlet-swirl distortion. A structured methodology for characterizing steady-state swirl distortion in terms of swirl descriptors and for correlating the swirl descriptors with loss in stability pressure ratio is presented. The methodology is to be considered in conjunction with other SAE inlet distortion methodologies. In particular, the combined effects of swirl and total-pressure distortion on stability margin are considered. However, dynamic swirl, i.e., time-variant swirl, is not considered. The implementation of the swirl assessment methodology is shown through both computational and experimental examples. Different types of swirl distortion encountered in various engine installations and operations are described, and case studies which highlight the impact of swirl on engine stability are provided. Supplemental material is included in the appendices.
Standard

A Process Standard for the Storage, Retrieval and Use of Three-Dimensional Type Design Data

2003-09-04
HISTORICAL
ARP9034
This document describes requirements for standardized processes (and associated technologies) that ensure type design data are retrievable and usable for the life of a type certificate (50+ years). These processes are primarily concerned with, but not limited to, digital type design data retained in three-dimensional representations and associated data that is required for complete product definition, such as tolerances, specification call-outs, product structure and configuration control data, etc. This process standard includes process requirements for managing the evolution of technologies required to ensure the availability of the data for the life of the product. This data must be available to meet regulatory, legal, contractual and business requirements. This process standard is not intended to incorporate every company specific requirement and does not dictate specific organizational structures within a company.
Standard

A Process Standard for the Storage, Retrieval and Use of Three-Dimensional Type Design Data

2015-04-21
CURRENT
ARP9034A
This document describes requirements for standardized processes (and associated technologies) that ensure type design data are retrievable and usable for the life of a type certificate (50+ years). These processes are primarily concerned with, but not limited to, digital type design data retained in three-dimensional representations and associated data that is required for complete product definition, such as tolerances, specification call-outs, product structure and configuration control data, etc. This process standard includes process requirements for managing the evolution of technologies required to ensure the availability of the data for the life of the product. This data must be available to meet regulatory, legal, contractual and business requirements. This process standard is not intended to incorporate every company specific requirement and does not dictate specific organizational structures within a company.
Standard

ACOUSTIC EMISSION TEST METHODS

1991-03-01
HISTORICAL
J1242_199103
The scope of this SAE Information Report is to supply the user with sufficient information so that he may decide whether acoustic emission test methods apply to his particular inspection problem. Detailed technical information can be obtained by referring to Section 2.
X