Refine Your Search

Topic

Author

Search Results

Viewing 1 to 20 of 24277
Standard

350 °F Autoclave Cure, Low Flow Toughened Epoxy Prepregs, Type 35, Class 1, Grade 190, Fiber 1

2019-03-12
WIP
AMS3961/3A
The intent of this specification is for the procurement of the material listed on the QPL and, therefore, no qualification or equivalency threshold values are provided. Users that intend to conduct a new material qualification or equivalency program shall refer to the Quality Assurance section of the base specification, AMS3961. All material qualification and equivalency data has been archived and is available for review upon request. Contact the CMH-17 Secretariat (www.cmh17.org) for additional information.
Standard

350 °F Autoclave Cure, Low Flow Toughened Epoxy Prepregs, Type 35, Class 1, Grade 190, Fiber 1

2015-12-02
CURRENT
AMS3961/3
The intent of this specification is for the procurement of the material listed on the QPL and, therefore, no qualification or equivalency threshold values are provided. Users that intend to conduct a new material qualification or equivalency program shall refer to the Quality Assurance section of the base specification, AMS3961. All material qualification and equivalency data has been archived and is available for review upon request. Contact the CMH-17 Secretariat (www.cmh17.org) for additional information.
Standard

350 °F Autoclave Cure, Low Flow Toughened Epoxy Prepregs, Type 35, Class 1, Grade 190, Fiber 2

2015-12-02
CURRENT
AMS3961/2
The intent of this specification is for the procurement of the material listed on the QPL and, therefore, no qualification or equivalency threshold values are provided. Users that intend to conduct a new material qualification or equivalency program shall refer to the Quality Assurance section of the base specification, AMS3961. All material qualification and equivalency data has been archived and is available for review upon request. Contact the CMH-17 Secretariat (www.cmh17.org) for additional information.
Standard

350 °F Autoclave Cure, Low Flow Toughened Epoxy Prepregs, Type 35, Class 1, Grade 190, Fiber 2

2019-03-12
WIP
AMS3961/2A
The intent of this specification is for the procurement of the material listed on the QPL and, therefore, no qualification or equivalency threshold values are provided. Users that intend to conduct a new material qualification or equivalency program shall refer to the Quality Assurance section of the base specification, AMS3961. All material qualification and equivalency data has been archived and is available for review upon request. Contact the CMH-17 Secretariat (www.cmh17.org) for additional information.
Standard

350 °F Autoclave Cure, Low Flow Toughened Epoxy Prepregs, Type 38, Class 2, Grade 193, Style 3K-70-PW, Fiber 1

2015-12-02
CURRENT
AMS3961/1
The intent of this specification is for the procurement of the material listed on the QPL and, therefore, no qualification or equivalency threshold values are provided. Users that intend to conduct a new material qualification or equivalency program shall refer to the Quality Assurance section of the base specification, AMS3961. All material qualification and equivalency data has been archived and is available for review upon request. Contact the CMH-17 Secretariat (www.cmh17.org) for additional information.
Standard

350 °F Autoclave Cure, Low Flow Toughened Epoxy Prepregs, Type 38, Class 2, Grade 193, Style 3K-70-PW, Fiber 1

2019-03-12
WIP
AMS3961/1A
The intent of this specification is for the procurement of the material listed on the QPL and, therefore, no qualification or equivalency threshold values are provided. Users that intend to conduct a new material qualification or equivalency program shall refer to the Quality Assurance section of the base specification, AMS3961. All material qualification and equivalency data has been archived and is available for review upon request. Contact the CMH-17 Secretariat (www.cmh17.org) for additional information.
Standard

8000 psi Hydraulic Systems: Experience and Test Results

2004-03-18
HISTORICAL
AIR4002
Shortly after World War II, as aircraft became more sophisticated and power-assist, flight-control functions became a requirement, hydraulic system operating pressures rose from the 1000 psi level to the 3000 psi level found on most aircraft today. Since then, 4000 psi systems have been developed for the U.S. Air Force XB-70 and B-1 bombers and a number of European aircraft including the tornado multirole combat aircraft and the Concorde supersonic transport. The V-22 Osprey incorporates a 5000 psi hydraulic system. The power levels of military aircraft hydraulic systems have continued to rise. This is primarily due to higher aerodynamic loading, combined with the increased hydraulic functions and operations of each new aircraft. At the same time, aircraft structures and wings have been getting smaller and thinner as mission requirements expand. Thus, internal physical space available for plumbing and components continues to decrease.
Standard

8000 psi Hydraulic Systems: Experience and Test Results

2012-11-15
CURRENT
AIR4002A
Shortly after World War II, as aircraft became more sophisticated and power-assist, flight-control functions became a requirement, hydraulic system operating pressures rose from the 1000 psi level to the 3000 psi level found on most aircraft today. Since then, 4000 psi systems have been developed for the U.S. Air Force XB-70 and B-1 bombers and a number of European aircraft including the tornado multirole combat aircraft and the Concorde supersonic transport. The V-22 Osprey incorporates a 5000 psi hydraulic system. The power levels of military aircraft hydraulic systems have continued to rise. This is primarily due to higher aerodynamic loading, combined with the increased hydraulic functions and operations of each new aircraft. At the same time, aircraft structures and wings have been getting smaller and thinner as mission requirements expand. Thus, internal physical space available for plumbing and components continues to decrease.
Standard

A Graphical Model for Interactive Distributed Control

2007-07-19
CURRENT
J2356_200707
The demonstrated architectural model and associated graphical techniques defined herein were developed to provide a simple method of visualizing the general functional operation or behavior of a Distributed Embedded System with a strong emphasis on representing system time characteristics.
Standard

A Guide for the Damaging Effects of Tire and Wheel Failures

2022-07-06
CURRENT
AIR5699A
Consideration for the damaging effects to aircraft from the failure of wheels and tires should be evaluated. This document discusses the types of problems in-service aircraft have experienced and methodology in place to assist the designers when evaluating threats for new aircraft design. The purpose of this document is to provide a history of in-service problems, provide a historical summary of the design improvements made to wheels and tires during the past 40 years, and to offer methodology which has been used to help designers assess the threat to ensure the functionality of systems and equipment located in and around the landing gear and in wheel wells.
Standard

A Guide to Extending Times Between Overhaul for Rotorcraft Power Train Transmissions Using Monitoring Data

2020-06-09
CURRENT
AIR6334
Time in Service (TIS), or flight hours, logged in maintenance records against an installed rotorcraft transmission is normally used as the “official” time on wing metric for the transmission’s component wear out inspection interval requirement and, in some instances, retirement change on life limited parts. This AIR addresses traditional methods of transmission TBO extensions and introduces rotorcraft transmission monitoring usage metrics that could be used to modify TIS inspections by tracking torque to determine both loads on life limited parts and component wear. This is a document of the SAE HM-1 Committee intended to be used as a technical information source and is not intended as a legal document or standard. This AIR does not provide detailed implementation steps, but does address general implementation, past experience, concerns and potential benefits.
Standard

A Process Standard for the Storage, Retrieval and Use of Three-Dimensional Type Design Data

2003-09-04
HISTORICAL
ARP9034
This document describes requirements for standardized processes (and associated technologies) that ensure type design data are retrievable and usable for the life of a type certificate (50+ years). These processes are primarily concerned with, but not limited to, digital type design data retained in three-dimensional representations and associated data that is required for complete product definition, such as tolerances, specification call-outs, product structure and configuration control data, etc. This process standard includes process requirements for managing the evolution of technologies required to ensure the availability of the data for the life of the product. This data must be available to meet regulatory, legal, contractual and business requirements. This process standard is not intended to incorporate every company specific requirement and does not dictate specific organizational structures within a company.
Standard

A Process Standard for the Storage, Retrieval and Use of Three-Dimensional Type Design Data

2015-04-21
CURRENT
ARP9034A
This document describes requirements for standardized processes (and associated technologies) that ensure type design data are retrievable and usable for the life of a type certificate (50+ years). These processes are primarily concerned with, but not limited to, digital type design data retained in three-dimensional representations and associated data that is required for complete product definition, such as tolerances, specification call-outs, product structure and configuration control data, etc. This process standard includes process requirements for managing the evolution of technologies required to ensure the availability of the data for the life of the product. This data must be available to meet regulatory, legal, contractual and business requirements. This process standard is not intended to incorporate every company specific requirement and does not dictate specific organizational structures within a company.
Standard

A Process for Utilizing Aerospace Propulsion Health Management Systems for Maintenance Credit

2018-12-06
HISTORICAL
ARP5987
The process detailed within this document is generic and can be applied to commercial and military applications. It applies to the entire end-to-end health management system throughout its lifecycle, covering on-board and on-ground elements. The practical application of this standardized process is detailed in the form of a checklist. The on-board element described here are the source of the data acquisition used for off-board analysis. The on-board aspects relating to safety of flight, pilot notification, etc., are addressed by the other SAE Committees standards and documents. This document does not prescribe hardware or software assurance levels, nor does it answer the question “how much mitigation and evidence are enough”. The criticality level and mitigation method will be determined between the ‘Applicant’ and the regulator.
Standard

ABRASION RESISTANCE TESTING—VEHICLE EXTERIOR GRAPHICS AND PIN STRIPING

1989-06-01
HISTORICAL
J1847_198906
This SAE Recommended Practice applies to the abrasion resistance testing of decorative tapes, graphics, and pin striping. It may also have relevance to certain vehicle labels and plastic wood grain film. The resistance to abrasive damage is judged qualitatively by its effect on the legibility, pattern, and color of the graphic marking. This recommended practice is intended as a guide toward standard practice but may be subject to frequent change to keep pace with experience and technical advances. This should be kept in mind when considering the use of this recommended practice.
Standard

ABRASIVE WEAR

1966-08-01
HISTORICAL
J965_196608
An enormous economic loss, as well as a waste of natural resources, is incurred world-wide as a result of wear of components and tools. Any effort expended in an attempt to reduce this loss is indeed worthwhile. The purpose of this SAE Information Report is to present the current state of knowledge of abrasive wear. This report, therefore, covers wear, or the undesired removal of metal by mechanical action, caused by abrasive particles in contact with the surface. It does not concern metal-to-metal wear or wear in the presence of an abrasive free lubricant. Abrasive wear occurs when hard particles, such as rocks, sand, or fragments of certain hard metals, slide or roll under pressure across a surface. This action tends to cut grooves across the metal surface, much like a cutting tool. Abrasive wear is of considerable importance in any part moving in relation to an abrasive.
X