Refine Your Search

Topic

Search Results

Video

Advanced Testing of Electric Drives and Motors

2012-05-16
It is a challenge to write a good motor specification. Typical spec. problems are omitted or ambiguous requirements, or overly tight tolerances that drive up cost but not value. These problems create hidden penalties in cost, performance, reliability, and development time. This presentation will describe common problems in traction motor specifications and associated penalties, as well as recommendations to avoid them. Topics will include spec.?s for demagnetization, mechanical considerations, torque ripple, performance, and others. Presenter David A. Fulton, Remy Inc.
Video

Advancing Aircraft Cyber Security - Potential New Architectures and Technologies

2012-03-16
Cyber security in the aviation industry, especially in relation to onboard aircraft systems, presents unique challenges in its implementation and management. The cyber threat model is constantly evolving and will continually present new and different challenges to the aircraft operator in responding to new cyber threats without either invoking a lengthy software update and re-certification process or limiting aircraft-to-ground communications to the threatened system or systems. This presentation discusses a number of system architectural options and developing technologies that could be considered to enhance the aircraft cyber protection and defensive capabilities of onboard systems as well as to minimize the effort associated with certification/re-certification. Some of these limit the aircraft?s vulnerabilities or in cyber terms, its ?threat surface?.
Video

Applying Critical-System Java to the Challenges of SMP Platforms

2012-03-21
In recent years, all major microprocessor manufacturers are transitioning towards the deploymenet of multiple processing cores on every chip. These multi-core architectures represent the industry consensus regarding the most effective utilization of available silicon resources to satisfy growing demands for processing and memory capacities. Porting off-the-shelf software capabilities to multi-core architectures often requires significant changes to data structures and algorithms. When developing new software capabilities specifically for deployment on SMP architectures, software engineers are required to address specific multi-core programming issues, and in the ideal, must do so in ways that are generic to many different multi-core target platforms. This talk provides an overview of the special considerations that must be addressed by software engineers targeting multi-core platforms and describes how the Java language facilitates solutions to these special challenges.
Video

Challenges in Automotive Electrification and Powertrain Component Development

2011-11-07
An overview of Daimler?s progression to advance powertrain technology in a growth industry shows many different solutions to improvement in transportation. Daimler continues to make breakthroughs in technology development and application building on 125 years of automotive development. Optimization of current powertrains will enable a significant gain in CO2/mi reductions, that dependent on product mix can be augmented with additional technologies. There is however no bypass to some form of electrification, enabling efficiency gains and alternative forms of power supply. Development of hybrid powertrains continues in an established manner and enhanced development of further electrified powertrains are in development. Organizationally and technically, significant skills and adjustments need to continue to be undertaken enabling OEMs and in particular the supply base to develop optimized solutions efficiently. The outlook is bright for novel component development and innovation.
Video

Copper-Rotor Induction- Motors: One Alternative to Rare Earths in Traction Motors

2012-05-16
The copper-rotor induction-motor made its debut in automotive electric traction in 1990 in GM's Impact EV. Since then, this motor architecture has covered millions of miles on other vehicle platforms which will soon include Toyota's RAV4-EV. With the industry's attention focused on cost-effective alternatives to permanent-magnet traction motors, the induction motor has returned to the spotlight. This talk will overview where the copper-rotor induction-motor is today, how the technology has evolved since the days of the GM Impact, the state-of-play in its mass-manufacturing processes and today's major supply-chain players. Presenter Malcolm Burwell, International Copper Association Inc.
Video

Development and Build-up of a Hybrid Commercial Vehicle

2011-12-05
In 1991, Hino Motors, Ltd. (Hino) launched the world's first hybrid city buses in the market. Thereafter, Hino has improved its hybrid vehicle technology and applied it to various commercial vehicles including city buses, sightseeing buses, medium-duty trucks and light-duty trucks. Presenter Shigeru Suzuki , Hino Motors, Ltd Shigeru Suzuki , Hino Motors, Ltd
Video

Development of a Hybrid Control Strategy for an Advanced Parallel HEV Powertrain with Two Electrical Axles

2012-05-29
This paper proposes a current limits distribution control strategy for a parallel hybrid electric vehicle (parallel HEV) which includes an advanced powertrain concept with two electrical driving axles. One of the difficulties of an HEV powertrain with two electrical driving axles is the ability to distribute the electrical current of one high voltage battery appropriately to the two independent electrical motors. Depending on the vehicle driving condition (i.e., car maneuver) or the maximization of the entire efficiency chain of the system, a suitable control strategy is necessary. We propose an input-output feedback linearization strategy to cope with the nonlinear system subject to input constraints. This approach needs an external, state dependent saturation element, which translates the state dependent control input saturation to the new feedback linearizing input and therefore preserves the properties of the differential geometric framework.
Video

Development, Verification, and Validation of Penn State Extended Range Electric Vehicle

2012-06-05
The Pennsylvania State University is one of 16 North American universities that participated in the EcoCAR advanced vehicle technology competition (http://www.ecocarchallenge.org/). A series-hybrid-electric vehicle based on a General Motors crossover SUV platform has been designed, built and tested for this purpose. The powertrain features a 1.3 L turbodiesel engine running on a B20 fuel system, a 75kW generator directly coupled to the engine and advanced lithium-ion batteries. In this paper, the vehicle architecture and control strategy are detailed and performance predictions (e.g., acceleration, fuel consumption and emissions) are presented. This includes discussion of the development process that led to the selected designs. The predicted performance is compared with data obtained on a chassis dynamometer and during on-road measurements over specified drive cycles. Presenter Shawn Getty
Video

Enabling Exponential Growth of Automotive Network Devices while Reducing the Wired Communication Infrastructure with Security, Reliability, and Safety

2012-05-22
The CAN protocol has served the automotive and related industries well for over twenty-five (25) years now; with the original CAN protocol officially released in 1986 followed by the release of CAN 2.0 in 1991. Since then many variants and improvements in CAN combined with the proliferation of automotive onboard microprocessor based sensors and controllers have resulted in CAN establishing itself as the dominant network architecture for automotive onboard communication in layers one (1) and two (2). Going forward however, the almost exponential growth of automotive onboard computing and the associated devices necessary for supporting said growth will unfortunately necessitate an equivalent growth in the already crowded wired physical infrastructure unless a suitable wireless alternative can be provided. While a wireless implementation of CAN has been produced, it has never obtained real traction within the automotive world.
Video

Enabling New Optical Fiber Applications in Avionics Networks

2012-03-21
Optical fiber has begun replacing copper in avionic networks. So far, however, it has been mainly restricted to non-critical applications (video transmission to the flight deck, IFE?). In order to take advantage of the high-bandwidth, low weight, no EMI properties of optical fibers in all data transmission networks, it will be necessary to improve the testing. One part of the puzzle, which is still missing, is the self-test button: the possibility to check the network and detect potential failures before they occur. The typical testing tool of a technician involved in optical fiber cables is the ?light source ? optical power meter? pair. With this tool, one can measure the insertion loss of the fiber link. A second important parameter, the return loss at each optical connector, is not analysed. In addition, this is only a global measurement, which does not allow the detection of possible weak points.
Video

Eurocae WG-72 Activities

2012-03-16
The presentation provides an overview about the activities of Eurocae Working Group 72 (WG-72) starting with a brief synopsis of the context which suggested why such a committee should be established in 2006. It then goes into further detail about the drivers for the work of the committee, which call for the products to be delivered. It addresses some of the challenges with respect to its users. It points out that one of the lessons the committee learned was importance of the focus on the users, such that the products provide their maximum utility. Hence, the users should better be among the participants to achieve this objective. Other industries have dealt with the subject of Information System (or Cyber-Physical) Security long before this industry was forced to consider it. Consequently there are many industry standards and national or international norms, which may help to develop what is deemed needed for Civil Aviation.
Video

Fault-Tree Generation for Embedded Software Implementing Dual-Path Checking

2011-11-17
Given the fast changing market demands, the growing complexity of features, the shorter time to market, and the design/development constraints, the need for efficient and effective verification and validation methods are becoming critical for vehicle manufacturers and suppliers. One such example is fault-tree analysis. While fault-tree analysis is an important hazard analysis/verification activity, the current process of translating design details (e.g., system level and software level) is manual. Current experience indicates that fault tree analysis involves both creative deductive thinking and more mechanical steps, which typically involve instantiating gates and events in fault trees following fixed patterns. Specifically for software fault tree analysis, a number of the development steps typically involve instantiating fixed patterns of gates and events based upon the structure of the code. In this work, we investigate a methodology to translate software programs to fault trees.
Video

Fiber Optic Strain Sensor Standardization - International and European Activities

2012-03-16
With the increased demand for high volume, cost-effective, fiber-reinforced thermoplastic parts, the lack of high throughput systems has become more pronounced. Thermoforming as a method to generate complex shapes from a flat preform is dependable and fast. In order to use readily available, standard unidirectional impregnated thermoplastic tape in this process, a flat perform must be created prior to the thermoforming step. Formerly, creating the preform by hand layup was a time consuming and therefore costly, step. Fiberforge�?s patented RELAY� technology overcomes the challenges of handling thermoplastic prepreg tape and provides a solution through the automated creation of a flat preform, referred to as a Tailored Blank?. Producing a part for thermoforming with accurate ply orientation and scrap minimization is now as simple as loading a material spool followed by a pressing a start button. Presenter Christina McClard, Fiberforge
Video

Ford: Driving Electric Car Efficiency

2012-03-29
The Focus Electric is Ford�s first full-featured 5 passenger battery electric vehicle. The engineering team set our sights on achieving best-in-class function and efficiency and was successful with an EPA certified 1XX MPGe and range XXX then the facing competition allowing for a slightly lower capacity battery pack and larger vehicle without customer trade-off. We briefly overview the engineering method and technologies employed to deliver the results as well as sharing some of the functional challenges unique to this type of vehicle. Presenter Charles Gray, Ford Motor Co.
Video

Future Development of EcoBoost Technology

2012-05-10
Combustion engines are typically only 20-30% efficient at part-load operating conditions, resulting in poor fuel economy on average. To address this, LiquidPiston has developed an improved thermodynamics cycle, called the High-Efficiency Hybrid Cycle (HEHC), which optimizes each process (stroke) of the engine operation, with the aim of maximizing fuel efficiency. The cycle consists of: 1) a high compression ratio; 2) constant-volume combustion, and 3) over-expansion. At a modest compression ratio of 18:1, this cycle offers an ideal thermodynamic efficiency of 74%. To embody the HEHC cycle, LiquidPiston has developed two very different rotary engine architectures ? called the ?M? and ?X? engines. These rotary engine architectures offer flexibility in executing the thermodynamics cycle, and also result in a very compact package. In this talk, I will present recent results in the development of the LiquidPiston engines. The company is currently testing 20 and 40 HP versions of the ?M?
Video

How to Address the Existing and Future Requirements of ASFC: The Safe and Secure Virtualization RTOS Approach

2012-03-21
With the increase of functions in the next generation of aircrafts, it has become very important to address reconfigurability. The bottom line is that space and weight available for critical computers in an aircraft remain mostly unchanged. These new functions imply more computation power and so more redundant elements for safety. CPU power has been increased but the latest evolution with the new multi-core CPU's introduces additional difficulties in terms of certification. IMA first generation was the first answer to address some of these problems by enabling the concentration of several certified critical functions in the same physical computer. However, up to now, such implementations were very static and did not scale very well with the increase of functions need for the next generation aircraft. That?s why the avionics industry is looking for improvement of existing solutions and must work on what would be the next generation of IMA (IMA-NG).
Video

Incorporating AFP Material Delivery Technology on Commercially Available Robot Machine Platforms

2012-03-23
: Fiber Placement equipment has historically been very large and very expensive. Therefore, the AFP process has been mostly exclusive to the larger aerospace companies of the world. In order to achieve more widespread use of the AFP process, a wider variety of machine configurations must be offered and cost of the equipment must be decreased. Commercially available, articulated robotic arms have been identified as an attractive, low cost option for AFP machine platforms. However, incorporating AFP material delivery technology with robotic arms has many challenges. These challenges relate to both hardware and software issues. This presentation will address the technical challenges of using robots as a machine platform for the AFP process and review the current status of this composites lamination equipment technology. Presenter Frederic Challois, Coriolis Composites
Video

Mastering the ARINC 661 Standard

2012-03-19
By introducing the concept of a separation between graphics and logic, interpreted run time architecture, and defined communication protocol, the ARINC 661 standard has addressed many of the concerns that aircraft manufacturers face when creating cockpit avionics displays. However, before kicking off a project based on the standard, it is important to understand all aspects of the standard, as well as the benefits and occasional drawbacks of developing with ARINC 661 in mind. This white paper will first provide an overview of ARINC 661 to clarify its concepts and how these relate to the development process. The paper will also describe the benefits of using a distributed development approach, and will outline practical, real world considerations for implementing an ARINC 661-based solution. Finally, readers will learn how commercial tools can be used to simplify the creation of displays following the standard to speed development and reduce costs.
Video

Modeling and Optimization of Plug-In Hybrid Electric Vehicle Fuel Economy

2012-05-23
One promising solution for increasing vehicle fuel economy, while still maintaining long-range driving capability, is the plug-in hybrid electric vehicle (PHEV). A PHEV is a hybrid electric vehicle (HEV) whose rechargeable energy source can be recharged from an external power source, making it a combination of an electric vehicle and a traditional hybrid vehicle. A PHEV is capable of operating as an electric vehicle until the battery is almost depleted, at which point the on-board internal combustion engine turns on, and generates power to meet the vehicle demands. When the vehicle is not in use, the battery can be recharged from an external energy source, once again allowing electric driving. A series of models is presented which simulate various powertrain architectures of PHEVs. To objectively evaluate the effect of powertrain architecture on fuel economy, the models were run according to the latest test procedures and all fuel economy values were utility factor weighted.
X