Refine Your Search

Topic

Search Results

Video

A Method for Testing GPS in Obstructed Environments Where GPS/INS Reference Systems Can Be Ineffective

2011-11-17
When vehicles share certain information wirelessly via Dedicated Short Range Communications (DSRC), they enable a new layer of electronic vehicle safety that, when needed, can generate warnings to drivers and even initiate automatic preventive actions. Vehicle location and velocity provided by Global Navigation Systems (GNSS), including GPS, are key in allowing vehicle path estimation. GNSS is effective in accurately determining a vehicle's location coordinates in most driving environments, but its performance suffers from obstructions in dense urban environments. To combat this, augmentations to GNSS are being contemplated and tested. This testing has been typically done using a reference GNSS system complimented by expensive military-grade inertial sensors, which can still fail to provide adequate reference performance in certain environments.
Video

A Study of PGM-Free Oxidation Catalyst YMnO3 for Diesel Exhaust Aftertreatment

2012-06-18
Currently, two consolidated aftertreatment technologies are available for the reduction of NOx emissions from diesel engines: Urea SCR (Selective Catalytic Reduction) systems and LNT (Lean NOx Trap) systems. Urea SCR technology, which has been widely used for many years at stationary sources, is becoming nowadays an attractive alternative also for light-duty diesel applications. However, SCR systems are much more effective in NOx reduction efficiency at high load operating conditions than light load condition, characterized by lower exhaust gas temperatures.
Video

A350XWB Fiber Placement Spars; From R&D Conception Phase to Serial Production

2012-03-23
At the end of 2006, two MTorres engineers visited the plant of Airbus UK in Filton receiving a new challenge: Find a more efficient way to manufacture Carbon Fiber Spars for the new A350 program. The range of possibilities were wide: manual infusion methods (RTM, RIM, RFI...), Automatic Taping & hot forming, or the new technology proposed, Fiberplacement or AFP. Two (2) options were considered: hot forming+ATL and AFP (both using prepeg technology.) The usage of a flat lay-up + hot forming technology was used in the only Airbus program that used carbon fiber for the wing manufacturing so far, the A400M. The expected greater complexity of A350 spar created doubts on the feasibility of using the above process, while the AFP technology, consisting of laying up directly on the final shape of the spar, also raised questions of technical feasibility, apart from the economic ?business case?, in case the productivity of the cell was not big enough. A ?Spar team?
Video

Advances in Exhaust Temperature Sensing and their Applicability for Diesel Emission Diagnostics

2012-01-24
Sensing exhaust gas temperature is a key component in diesel after treatment systems for both control and diagnostics. Accuracy varies significantly depending upon the sensing technology and implementation in the system. Prior published work has demonstrated that resistance based temperature sensors are not able to achieve the system accuracy required for advanced diagnostics over the life of the emission system. This presentation will show that it is feasible to achieve better than �10�C end of life system accuracy by means of active thermocouple technology. Results from tests at Michigan Technological University will be used to illustrate diagnostic uncertainty related to the application of temperature sensors and a specific DOC/DPF example will be used to show the benefits of accurate temperature based diagnostics. Presenter D. P. Culbertson, Watlow Gordon
Video

Airbus - EMAs for Flight Controls Actuation System - An Important Step Achieved in 2011

2012-03-21
With the growing use of carbon fiber composite structure in Aircraft Manufacturing, the challenge of drilling carbon fiber stacked with Titanium has become a focus point. Due to the abrasive nature of the carbon fiber (CF), cutting tool life is relatively short when drilling carbon fiber stalked with Titanium. A common drill wear indicator is exit burr formation in the Titanium. As drilling tools wear due to the abrasive nature of the CF, the exit burr in the in the Titanium increases. This study seeks to understand the factors that lead to tool wear and exit burr formation. A correlation may be made relating drilling thrust forces with exit burr formation. Different cutting tools geometries and materials are studied using a high speed camera to attempt to understand the factors influencing exit burr formation. Findings are optimized and tested. Decreasing exit burr in the drilling of CF and Titanium may increase tool life thereby reducing tool costs to airframe manufacturers.
Video

Automating AFP Tuning Using a Laser Sensor

2012-03-22
A significant step is achieved on the flight control actuation system toward the more electrical aircraft through the Airbus A380, A400M and the A350 development phase ongoing. The A380/A400M/A350 features a mixed flight control actuation power source distribution, associating electrically powered actuators with conventional FlyByWire hydraulic servocontrols. In the scope of the preparation of the future Airbus Aircraft, this paper presents the perspectives of the use of the EMA technologies for the flight control systems in the more electrical aircraft highlighting the main technical challenges need to treat: jamming susceptibility, ?on board? maintenance reduction, Operational reliability increase, power electronics and power management optimization, and regarding the environmental constraints, the predicted performances; the benefits associated to the optimized utilization of on-board power sources.
Video

Business Model for Successful Commercialization of Aircraft Designs

2012-03-21
This article characterizes the special features of drilling of CFRP/Titanium and -Aluminium stacks. Simplified theoretic models will show how CFRP/Titanium stacks should be machined without scratches and burn marks contacting carbon. Low axial forces and smart chip removal technology are the main characteristics of the drilling tool technology, optimized to reach H8 quality in one shot operation. Presenter Peter Mueller-Hummel, Cutting Tools Inc.
Video

Career Counselor Series: Effective Communication

2017-09-19
Alyson Lyon, executive leadership coach, discusses the value of effective and efficient communication. SAE Members can view the full version by logging into the Member Connection. Not a Member? Join us today at sae.org/join.
Video

Career Counselor Series: The Power of Mentoring

2017-06-28
Alyson Lyon, executive leadership coach, discusses the value of being a mentor and/or a mentee. SAE Members can view the full version by logging into the Member Connection. Not a Member? Join us today at sae.org/join.
Video

Composite Predictive Engineering Studies - American Chemistry Council Plastics Division

2012-05-29
Since 2006 Oak Ridge National Labs (ORNL) and the Pacific Northwest National Labs (PNNL) have conducted research of injection molded long glass fiber thermoplastic parts funded by U.S. DOE. At DOE's request, ACC's Plastics Division Automotive Team and USCAR formed a steering committee for the National Labs, whose purpose was to provide industry perspective, parts materials and guidance in processing. This ACC affiliation enabled the plastics industry to identify additional key research requirements necessary to the success of long glass fiber injection molded materials and their use in the real world. Through further cooperative agreements with Autodesk Moldflow and University of Illinois, a new process model to predict both fiber orientation distribution and fiber length distribution is now available. Mechanical property predictive tools were developed and Moldflow is integrating these models into their software.
Video

Detecting Damage and Damage Location on Large Composite Parts using RFID Technology

2012-03-16
Probabilistic methods are used in calculating composite part design factors for, and are intended to conservatively compensate for worst case impact to composite parts used on space and aerospace vehicles. The current method to investigate impact damage of composite parts is visual based upon observation of an indentation. A more reliable and accurate determinant of impact damage is to measure impact energy. RF impact sensors can be used to gather data to establish an impact damage benchmark for deterministic design criteria that will reduce material applied to composite parts to compensate for uncertainties resulting from observed impact damage. Once the benchmark has been established, RF impact sensors will be applied to composite parts throughout their life-cycle to alert and identify the location of impact damage that exceeds the maximum established benchmark for impact.
Video

Enabling Exponential Growth of Automotive Network Devices while Reducing the Wired Communication Infrastructure with Security, Reliability, and Safety

2012-05-22
The CAN protocol has served the automotive and related industries well for over twenty-five (25) years now; with the original CAN protocol officially released in 1986 followed by the release of CAN 2.0 in 1991. Since then many variants and improvements in CAN combined with the proliferation of automotive onboard microprocessor based sensors and controllers have resulted in CAN establishing itself as the dominant network architecture for automotive onboard communication in layers one (1) and two (2). Going forward however, the almost exponential growth of automotive onboard computing and the associated devices necessary for supporting said growth will unfortunately necessitate an equivalent growth in the already crowded wired physical infrastructure unless a suitable wireless alternative can be provided. While a wireless implementation of CAN has been produced, it has never obtained real traction within the automotive world.
Video

Exhaust Particle Sensor for OBD Application

2012-02-16
This session covers topics regarding new CI and SI engines and components. This includes analytical, experimental, and computational studies covering hardware development as well as design and analysis techniques. Presenter Joshua Styron, Ford Motor Co.
Video

Experience with Using Hardware-in-the-Loop Simulation for Validation of OBD in Powertrain Electronics Software

2011-12-05
These advanced checks have resulted in development of many new diagnostic monitors, of varying types, and a whole new internal software infrastructure to handle tracking, reporting, and self-verification of OBD related items. Due to this amplified complexity and the consequences surrounding a shortfall in meeting regulatory requirements, efficient and thorough validation of the OBD system in the powertrain control software is critical. Hardware-in-the-Loop (HIL) simulation provides the environment in which the needed efficiency and thoroughness for validating the OBD system can be achieved. A HIL simulation environment consisting of engine, aftertreatment, and basic vehicle models can be employed, providing the ability for software developers, calibration engineers, OBD experts, and test engineers to examine and validate both facets of OBD software: diagnostic monitors and diagnostic infrastructure (i.e., fault memory management).
Video

Exploring the Manual Forming of Complex Geometry Composite Panels for Productivity and Quality Gains in Relation to Automated Forming Capabilities

2012-03-23
In a variety of industries there is a growing need to manufacture high quality carbon fibre epoxy matrix composite structures at greater production rates and lower costs than has historically been the case. This has developed into a desire for the automation of the manufacture of components, and in particular the lay-up phase, with Automated Tape Laying (ATL) and Fibre Placement (AFP) the most popular choices. When used for large primary structures there are such potential gains to be had that both techniques have seen rapid implementation into manufacturing environments. But significant concerns remain and these have limited their wider adoption into secondary structure manufacturing, where manual forming of woven broadgoods is dominant. As a result the manufacture of secondary structures is generally explored for costs reduction through drape simulation and lower cost materials.
Video

Fiber Optic Strain Sensor Standardization - International and European Activities

2012-03-16
With the increased demand for high volume, cost-effective, fiber-reinforced thermoplastic parts, the lack of high throughput systems has become more pronounced. Thermoforming as a method to generate complex shapes from a flat preform is dependable and fast. In order to use readily available, standard unidirectional impregnated thermoplastic tape in this process, a flat perform must be created prior to the thermoforming step. Formerly, creating the preform by hand layup was a time consuming and therefore costly, step. Fiberforge�?s patented RELAY� technology overcomes the challenges of handling thermoplastic prepreg tape and provides a solution through the automated creation of a flat preform, referred to as a Tailored Blank?. Producing a part for thermoforming with accurate ply orientation and scrap minimization is now as simple as loading a material spool followed by a pressing a start button. Presenter Christina McClard, Fiberforge
Video

Formula SAE Sponsorship Video

2013-08-29
Formula SAE challenges students to conceive, design, fabricate, and compete with small formula-style racing car. 120 university teams from around the globe spend 8-12 months designing, building and preparing their vehicles for the competition. Learn why sponsors support Formula SAE and become a sponsor today!
Video

Goal Setting Strategies

2016-03-01
Alyson Lyon, Executive Leadership Coach, discusses how accurately defining goals leads to success. Members can view the full version by logging into the Member Connection here Not a Member? Get a taste of the Member Connection and join at connection.sae.org.
Video

High Speed Machining of CFRP Parts

2012-03-16
High Speed Machining of CFRP Parts Investigation of the influence of new geometries, cutting datas and coolant capabilities on the surface finish of CFRP parts. State of the art: Different CFRP grades and machining conditions make geometry adjustments to the tool necessary. Mechanical failures through machining operations can be avoided in most of the cases. New unidirectional CFRP grades and dry machining processes again lead to machining problems. This study investigates new geometries to avoid heat damage with dry maching and air coolant in case of unidirectional CFRP. With help of a thermo camera and the surface investigation with a scanning electron microscope, heat damage can be analysed and therefore new geometries can be developed and tested. Target is to develop a new multi purpose CFRP geometry to meet the requirements of the future. The reduction of different geometries used leads to major cost savings. Presenter Ingo von Puttkamer, Guhring oHG
X