Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

A Multi-disciplinary and Multi-scale Simulation-Based Approach for the Design of Control Systems

2013-09-17
2013-01-2212
This paper introduces a model-based systems and embedded software engineering, workflow for the design of control systems. The interdisciplinary approach that is presented relies on an integrated set of tools that addresses the needs of various engineering groups, including system architecture, design, and validation. For each of these groups, a set of best practices has been established and targeted tools are proposed and integrated in a unique platform, thus allowing efficient communication between the various groups. In the initial stages of system design, including functional and architectural design, a SysML-based approach is proposed. This solution is the basis to develop systems that have to obey both functional and certification standards such as ARINC 653 (IMA) and ARP 4754A. Detailed system design typically requires modeling and simulation of each individual physical component of the system by various engineering groups (mechanical, electrical, etc.).
Technical Paper

A Three-Layer Model for Ice Crystal Icing in Aircraft Engines

2023-06-15
2023-01-1481
This paper presents the current state of a three-layer surface icing model for ice crystal icing risk assessment in aircraft engines, being developed jointly by Ansys and Honeywell to account for possible heat transfer from inside an engine into the flow path where ice accretion occurs. The bottom layer of the proposed model represents a thin metal sheet as a substrate surface to conductively transfer heat from an engine-internal reservoir to the ice layer. The middle layer is accretion ice with a porous structure able to hold a certain amount of liquid water. A shallow water film layer on the top receives impinged ice crystals. A mass and energy balance calculation for the film determines ice accretion rate. Water wicking and recovery is introduced to transfer liquid water between film layer and porous ice accretion layer.
Technical Paper

An Eulerian Approach with Mesh Adaptation for Highly Accurate 3D Droplet Dynamics Simulations

2019-06-10
2019-01-2012
Two main approaches are available when studying droplet dynamics for in-flight icing simulations: the Lagrangian approach, in which each droplet trajectory is integrated until it impacts the vehicle under study or when it leaves it behind without impact, and the Eulerian approach, where the droplet dynamics is solved as a continuum. In both cases, the same momentum equations are solved. Each approach has its advantages. In 2D, the Lagrangian approach is easy to code and it is very efficient, particularly when used in combination with a panel method flow solver. However, it is a far less practical approach for 3D simulations, particularly on complex geometries, as it is not an easy task to accurately determine the droplet seeding region without a great number of droplet trajectories, dramatically increasing the computing cost. Converting the impact locations into a water collection distribution is also a complex task, since droplet trajectories in 3D can follow convoluted paths.
Technical Paper

An Ice Shedding Model for Rotating Components

2019-06-10
2019-01-2003
A CFD simulation methodology is presented to evaluate the ice that sheds from rotating components. The shedding detection is handled by coupling the ice accretion and stress analysis solvers to periodically check for the propagation of crack fronts and possible detachment. A novel approach for crack propagation is highlighted where no change in mesh topology is required. The entire computation from flow to impingement, ice accretion and crack analysis only requires a single mesh. The accretion and stress module are validated individually with published data. The analysis is extended to demonstrate potential shedding scenarios on three complex industrially-relevant 3D cases: a helicopter blade, an engine fan blade and a turboprop propeller. The largest shed fragment will be analyzed in the context of FOD damage to neighboring aircraft/component surfaces.
Technical Paper

Multi-Objective Aerodynamic Optimization of Vehicle Shape Using Adjoint Approach Based on Steady-State and Transient Flow Solutions

2021-04-06
2021-01-0945
In order to achieve the purpose of saving energy and reducing emission, the improvement of aerodynamic performance plays an increasingly crucial role for car manufacturers. Previous studies have confirmed the validity of gradient-based adjoint algorithm for its high efficiency in shape optimization. In this paper, two important aspects of adjoint approach were explored. One is vehicle aerodynamic optimization with multiple objectives, and the other is using time-averaged flow results as the primal solution, both are issues of high interest in recent applications. First, adjoint shape optimization with steady-state and time-averaged flow simulations were respectively calculated and comparatively discussed based on a production SUV. The shape modifications of the two cases indicated that the impact of primal solution on design change could not be neglected, due to the different intrinsic codes of steady and transient turbulence models.
Technical Paper

Numerical Demonstration of the Humidity Effect in Engine Icing

2019-06-10
2019-01-2015
The importance of the variation of relative humidity across turbomachinery engine components for in-flight icing is shown by numerical analysis. A species transport equation for vapor has been added to the existing CFD methodology for the simulation of ice growth and water flow on engine components that are subject to ice crystal icing. This entire system couples several partial differential equations that consider heat and mass transfer between droplets, crystals and air, adding the cooling of the air due to particle evaporation to the icing simulation, increasing the accuracy of the evaporative heat fluxes on wetted walls. Three validation cases are presented for the new methodology: the first one compares with the numerical results of droplets traveling inside an icing tunnel with an existing evaporation model proposed by the National Research Council of Canada (NRC).
X