Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

An Eulerian Approach with Mesh Adaptation for Highly Accurate 3D Droplet Dynamics Simulations

2019-06-10
2019-01-2012
Two main approaches are available when studying droplet dynamics for in-flight icing simulations: the Lagrangian approach, in which each droplet trajectory is integrated until it impacts the vehicle under study or when it leaves it behind without impact, and the Eulerian approach, where the droplet dynamics is solved as a continuum. In both cases, the same momentum equations are solved. Each approach has its advantages. In 2D, the Lagrangian approach is easy to code and it is very efficient, particularly when used in combination with a panel method flow solver. However, it is a far less practical approach for 3D simulations, particularly on complex geometries, as it is not an easy task to accurately determine the droplet seeding region without a great number of droplet trajectories, dramatically increasing the computing cost. Converting the impact locations into a water collection distribution is also a complex task, since droplet trajectories in 3D can follow convoluted paths.
Technical Paper

IMPACT: Numerical Study of Aerodynamics of an Iced Forward-Swept Tail with Leading Edge Extension

2023-06-15
2023-01-1371
In-flight icing significantly influences the design of large passenger aircraft. Relevant aspects include sizing of the main aerodynamic surfaces, provision of anti-icing systems, and setting of operational restrictions. Empennages of large passenger aircraft are particularly affected due to the small leading edge radius, and the requirement to generate considerable lift for round out and flare, following an extended period of descent often in icing conditions. This paper describes a CFD-based investigation of the effects of sweep on the aerodynamic performance of a novel forward-swept horizontal stabilizer concept in icing conditions. The concept features an unconventional forward sweep, combined with a high lift leading edge extension (LEX) located within a fuselage induced droplet shadow zone, providing passive protection from icing.
Technical Paper

Icing Simulation Results Using Lagrangian Particle Tracking in Ansys Fluent Icing

2023-06-15
2023-01-1478
This paper introduces the Lagrangian particle tracking technology readily available in Ansys Fluent in the in-flight icing simulation workflow, which normally uses the Eulerian approach for droplet flows. The Lagrangian solver is incorporated in the Fluent Icing workspace which is to become the next-gen in-flight icing simulation tool provided by Ansys. Lagrangian tracking will eventually be used for SLD and ice crystal rebound and re-impingement calculations in the Ansys workflow. Here we introduce some preliminary results with the current state of its implementation as of Fluent Icing release 2023R2. Example cases include several selections from the 1st Ice prediction workshop with experimental comparisons as well as results obtained earlier with the Eulerian droplet solution strategy. Collection efficiency comparisons on clean geometries show good agreement between Eulerian and Lagrangian methods when the particle seeds are in the millions range.
Technical Paper

Multi-Objective Aerodynamic Optimization of Vehicle Shape Using Adjoint Approach Based on Steady-State and Transient Flow Solutions

2021-04-06
2021-01-0945
In order to achieve the purpose of saving energy and reducing emission, the improvement of aerodynamic performance plays an increasingly crucial role for car manufacturers. Previous studies have confirmed the validity of gradient-based adjoint algorithm for its high efficiency in shape optimization. In this paper, two important aspects of adjoint approach were explored. One is vehicle aerodynamic optimization with multiple objectives, and the other is using time-averaged flow results as the primal solution, both are issues of high interest in recent applications. First, adjoint shape optimization with steady-state and time-averaged flow simulations were respectively calculated and comparatively discussed based on a production SUV. The shape modifications of the two cases indicated that the impact of primal solution on design change could not be neglected, due to the different intrinsic codes of steady and transient turbulence models.
Technical Paper

Numerical Modelling of Primary and Secondary Effects of SLD Impingement

2019-06-10
2019-01-2002
A CFD simulation methodology for the inclusion of the post-impact trajectories of splashing/bouncing Supercooled Large Droplets (SLDs) and film detachment is introduced and validated. Several scenarios are tested to demonstrate how different parameters affect the simulations. Including re-injecting droplet flows due to splashing/bouncing and film detachment has a significant effect on the accuracy of the validations shown in the article. Validation results demonstrate very good agreement with the experimental data. This approach is then applied to a full-scale twin-engine turboprop to compute water impingement on the wings and the empennage.
Technical Paper

Numerical Study of Iced Swept-Wing Performance Degradation using RANS

2023-06-15
2023-01-1402
This paper studies the level of confidence and applicability of CFD simulations using steady-state Reynolds-Averaged Navier-Stokes (RANS) in predicting aerodynamic performance losses on swept-wings due to contamination with ice accreted in-flight. The wing geometry selected for the study is the 65%-scale Common Research Model (CRM65) main wing, for which NASA Glenn Research Center’s Icing Research Tunnel has generated experimental ice shapes for the inboard, mid-span, and outboard sections. The reproductions at various levels of fidelity from detailed 3D scans of these ice shapes have been used in recent aerodynamic testing at the Office National d’Etudes et Recherches Aérospatiales (ONERA) and Wichita State University (WSU) wind tunnels. The ONERA tests were at higher Reynolds number range in the order of 10 million, while the WSU tests were in the order of 1 million.
X