Refine Your Search

Topic

Search Results

Viewing 1 to 10 of 10
Technical Paper

ATV Thermal Control System

2004-07-19
2004-01-2469
The Automated Transfer Vehicle (ATV) Thermal Control System (TCS) has the task to ensure the required internal environment at level of pressurized module and to thermally control the not pressurised modules and installed equipment, using passive and active control means, in response to the relevant applicable requirements. The ATV vehicle is assially subdivided into three main modules: the Integrated Cargo Carrier (ICC), the Equipped Avionics Bay (EAB) and the Equipped Propulsion Bay (EPB). Each of these modules present elaborated and specific thermal design solutions, to satisfy the different required operative tasks. The extensive thermal analysis campaign performed at ATV vehicle level and in progress for the next Qualification Review (QR) to justify and support the thermal control design solutions and verification status is described.
Technical Paper

Design Status of the Closed-Loop Air Revitalization System ARES for Accommodation on the ISS

2009-07-12
2009-01-2506
The Closed-Loop Air REvitalisation System ARES is a regenerative life support system for closed habitats. With regenerative processes the ARES covers the life support functions: 1. Removal of carbon dioxide from the spacecraft atmosphere via a regenerative adsorption/desorption process, 2. Supply of breathable oxygen via electrolysis of water, 3. Catalytic conversion of carbon dioxide with hydrogen to water and methane. ARES will be accommodated in a double ISPR Rack which will contain all main and support functions like power and data handling and process water management. It is foreseen to be installed onboard the International Space Station (ISS) in the Columbus Module in 2013. After an initial technology demonstration phase ARES shall continue to operate thus enhancing the capabilities of the ISS Life Support System as acknowledged by NASA [5]. Due to its regenerative processes ARES will allow a significant reduction of water upload to the ISS.
Technical Paper

Design Validation - via Parabolic Flight Tests - of a Condensate Buffer Equalizing a Discontinuous Gas / Water Flow between a Condensing Heat Exchanger and a Water Separator

2006-07-17
2006-01-2087
EADS SPACE Transportation GmbH designed, built and tested a condensate buffer to be located between a Condensing Heat Exchanger (CHX) and a Condensate Water Separator Assembly (CWSA), as part of the ECLSS of the European Columbus Module. Under zero-g conditions, the separation of water from an air-water mixture is always difficult, especially if a passive device is to be used such as the low power consuming Columbus CWSA. The additional buffer volume reduces condensate water peaks reaching the CWSA to a level that excludes an overloading of the CWSA and a release of free water droplets into the air return to the cabin. In the CHX/CWSA system this may only be necessary under worst case operational conditions and with a failure of the qualified hydrophilic coating of the CHX. The buffer design principle was confirmed via prior analyses and on-ground testing. The performance of such a condensate buffer under micro-g conditions was verified during parabolic flights.
Technical Paper

Development of Columbus Orbital Facility Thermal Mathematical Models for Integrated International Space Station Thermal Analyses

1996-07-01
961540
The Columbus Orbital Facility is being developed as the European laboratory contribution to the United States' led International Space Station programme. The need to exchange thermal mathematical models frequently amongst the Space Station partners for thermal analyses in support of their individual programme milestone, integration and verification activities requires the development of a commonly agreed and effective approach to identify and validate mathematical models and environments. The approach needs to take into account the fact that the partners have different model and software tool requirements and the fact that the models need to be properly tailored to include all the relevant design features. It must also decouple both programmes from the unavoidable design changes they are still undergoing. This problem presents itself for both active and passive thermal interfaces.
Technical Paper

ECS Re-Test Analytical Evaluation

2005-07-11
2005-01-3118
A final test activity was carried out to complete the verification of the Environmental Control System (ECS) performances by experimentally reproducing the thermal hydraulic behaviour of the Environmental Control & Life Support Subsystem (ECLSS) section integrated in the overall Module, expected on analytical basis. A previous test campaign (called Columbus ECS PFM Test) carried out in EADS-Bremen in spring 2003 and described in paper number 2004-01-2425 showed some contradictory data concerning the air loop behaviour. These incoherent test results were related to the environmental and geometrical cabin loop conditions during the on-ground 1g test and to improper position of the sensor measuring the cabin temperature. For this reason a partial repetition of the test has been performed. In particular, this experimental campaign was focused on the verification of the cabin air temperature control, as a consequence of the Temperature Control Valve (TCV) movement.
Technical Paper

Esarad--Improvements to the European Space AgencyS Radiative Analyses

1996-07-01
961374
ESARAD is an integrated suite of analysis tools for thermal radiative analysis. The suite provides modules for: • Geometry Definition; • Calculation of view factor, radiative exchange factor and solar, albedo and planet flux results; •Visualization of models in orbit with pre- and post-processing of radiative and thermal results; • Reporting of all aspects of the model; and • Generation of Input Files for Thermal Analysis tools. ESARAD is driven by a fully developed GUI, providing the user with a simple, intuitive windows, menus, forms interface to all its features. A modern, block structured language can also be used to run ESARAD. This gives the advanced user great power and flexibility to perform the most complex analyses. ESARAD was designed and developed between 1988 and 1991 to replace the VWHEAT software used by ESA at that time.
Technical Paper

Incremental Modeling and Validation of Space Mission Using AADLv2

2011-10-18
2011-01-2529
The development process of space mission software has to go through numerous steps, from early dimensioning factors at system level (e.g. energy to be consumed by a system, weight of equipment) to the description of low-level software concerns (tasks period, etc.). Most of the time, mission components are taken or derived from existing projects and use well-known best practices: hardware and software concerns are designed from a set of existing components, and are usually well tested and documented. However, teams, with different technical backgrounds, and development approaches, achieve the design. This adds incidental complexity to the design of a common architecture and its verification. Consequently, even if design of new systems is close to existing ones, the recurring key challenge is to reconcile the different views built by these teams, and to ensure that all properties are preserved and validated.
Technical Paper

Modeling and Correlation of an Actively-Controlled Single Phase Mechanically-Pumped Fluid Loop

2007-07-09
2007-01-3122
This paper describes the transient simulation of a single-phase mechanically pumped fluid loop (MPFL) thermal control system, developed in the frame of the European Space Agency ARTES 8 (Advanced Research in Telecommunication Systems - Large Platform Program) program. MPFL is intended to cool a part of the payload on a high power telecommunication satellite. A transient simulation has been implemented using ESATAN/FHTS; hence the results have been correlated with the test results, obtained from full scale MPFL testing, using real on-orbit profiles. The most considerable parts of the activities described herein are simulation of the thermal control law, verification of control parameters during thermo-hydraulic testing and the subsequent correlation.
Technical Paper

The Service Module Thermal Tests of the ESA Herschel and Planck Satellites

2007-07-09
2007-01-3167
European Space Agency (ESA) has planned two important missions for performing astronomical investigations in the infrared and sub-millimetre wavelength range: ♦Herschel satellite has an observatory type mission and is the fourth cornerstone mission (CS4) of the “Horizon 2000” programme. It will carry three instruments (HIFI, SPIRE, and PACS) for high and medium resolution spectroscopy, imaging and photometry over the sub-millimetre and far-infrared range. A 3.5 m telescope will focus the incoming radiation on the Focal Plane Units of these instruments. ♦Planck satellite has a survey type mission and is the third Medium mission (M3) of the “Horizon 2000” programme. It will provide a definitive high-angular resolution map of the cosmic microwave background anisotropies over at least 95% of the sky and over a wide frequency range. A 1.5 m telescope will focus the incoming radiation on the focal plane shared by the two instruments (LFI and HFI).
Technical Paper

Thermal Stability Analysis in the Frequency Domain using the ESATAN Thermal Suite

2008-06-29
2008-01-2078
An increasing number of spacecraft missions have very stringent requirements for thermal stability to avoid thermally driven noise from affecting the main observables. For example, it may be necessary to reduce temperature fluctuations in the neighbourhood of the instrument below micro-Kelvin (μK). Consequently, the influence of fluctuations in boundary temperature or internal power dissipation on temperature at the instrument detector must be precisely evaluated. Thermal stability requirements are usually expressed as an upper limit on the linear spectrum density (LSD) of temperature fluctuations. This indicates the strength of the response to a perturbation of a given frequency, and is usually stated in units of K/√Hz. The LSD can be estimated by running a succession of transient simulations and applying Fast Fourier Transforms techniques, but this method is time-consuming and has numerical limitations.
X