Refine Your Search

Search Results

Viewing 1 to 13 of 13
Technical Paper

A Reevaluation of Appendix C Ice Roughness Using Laser Scanning

2015-06-15
2015-01-2098
Many studies have been performed to quantify the formation and evolution of roughness on ice shapes created in Appendix C icing conditions, which exhibits supercooled liquid droplets ranging from 1-50 µm. For example Anderson and Shin (1997), Anderson et al. (1998), and Shin (1994) represent early studies of ice roughness during short-duration icing events measured in the Icing Research Tunnel at the NASA Glenn Research Center. In the historical literature, image analysis techniques were employed to characterize the roughness. Using multiple images of the roughness elements, these studies of roughness focused on extracting parametric representations of ice roughness elements. While the image analysis approach enabled many insights into icing physics, recent improvements in laser scanning approaches have revolutionized the process of ice accretion shape characterization.
Technical Paper

Additional Large-Drop Ice Accretion Test Results for a Large Scale Swept Wing Section from January 2022

2023-06-15
2023-01-1382
In-flight icing is an important consideration that affects aircraft design, performance, certification and safety. Newer regulations combined with increasing demand to reduce fuel burn, emissions and noise are driving a need for improvements in icing simulation capability. To that end, this paper presents the results of additional ice accretion testing conducted in the NASA Icing Research Tunnel in January 2022 with a large swept wing section typical of a modern commercial transport. The model was based upon a section of the Common Research Model wing at the 64% semispan station with a streamwise chord length of 136 in. The test conditions were developed with an icing scaling analysis to generate similar conditions for a small median volumetric diameter (MVD) = 25 μm cloud and a large MVD = 110 μm cloud. A series of tests were conducted over a range of total temperature from -23.8 °C to -1.4 °C with all other conditions held constant.
Technical Paper

Computational Icing Analysis on NASA’s SIDRM Geometry to Investigate Collection Efficiency

2023-06-15
2023-01-1476
Computational icing analysis results were compared to experimental icing tunnel data including aerothermal (e.g., dry air) and supercooled water droplet rime-ice conditions from tests conducted in early 2022 at the NASA Icing Research Tunnel (IRT). The Simulated Inter-compressor Duct Research Model (SIDRM) test article was used in this study, and its geometry represents the inter-compressor duct region of a turbofan engine. The test article’s purpose is to study the physics of supercooled water icing and ice crystal icing. This study compared three different icing codes: FENSAP-ICE (Eulerian approach), LEWICE3D (Lagrangian approach), and GlennICE (Lagrangian approach). All three icing codes were conducted on SIDRM’s complex body flow-field and compared to different experimental supercooled water rime runs. The test article instrumentation (pressure taps, thermocouples, etc.) and 3D laser scans of final ice shapes were used to compare against the different icing code simulations.
Journal Article

Development of a Coupled Air and Particle Thermal Model for Engine Icing Test Facilities

2015-06-15
2015-01-2155
This paper describes a numerical model that simulates the thermal interaction between ice particles, water droplets, and the flowing air applicable during icing wind tunnel tests where there is significant phase-change of the cloud. It has been previously observed that test conditions, most notably temperature and humidity, change when the icing cloud is activated. It is hypothesized that the ice particles and water droplets thermally interact with the flowing air causing the air temperature and humidity to change by the time it reaches the test section. Unlike previous models where the air and particles are uncoupled, this model attempts to explain the observed changes in test conditions by coupling the conservation of mass and energy equations. The model is compared to measurements taken during wind tunnel tests simulating ice-crystal and mixed-phase icing that relate to ice accretions within turbofan engines.
Technical Paper

Further Evaluation of Scaling Methods for Rotorcraft Icing

2011-06-13
2011-38-0083
The paper will present experimental results from two recent icing tests in the NASA Glenn Icing Research Tunnel (IRT). The first test, conducted in February 2009, was to evaluate the current recommended scaling methods for fixed wing on representative rotor airfoils at fixed angle of attack. For this test, scaling was based on the modified Ruff method with scale velocity determined by constant Weber number and water film Weber number. Models were un-swept NACA 0012 wing sections. The reference model had a chord of 91.4 cm and scale model had a chord of 35.6 cm. Reference tests were conducted with velocity of 100 kt (52 m/s), droplet medium volume diameter (MVD) 195 μm, and stagnation-point freezing fractions of 0.3 and 0.5 at angle of attack of 5° and 7°. It was shown that good ice shape scaling was achieved with constant Weber number for NACA 0012 airfoils with angle of attack up to 7°.
Technical Paper

GaAs/Ge Solar Powered Aircraft, 1999

1999-04-06
1999-01-1372
Unmanned Aerial Vehicles (UAV) are being proposed for many applications including surveillance, mapping and atmospheric studies. These applications require a lightweight, low speed, medium to long duration aircraft. Due to the weight, speed, and altitude constraints imposed on such an aircraft, solar array generated electric power can be a viable alternative to air-breathing engines for certain missions. Development of such an aircraft is currently being funded under the Environmental Research Aircraft and Sensor Technology (ERAST) program. NASA Lewis Research Center (LeRC) has built a Solar Electric Airplane to demonstrate UAV technology. This aircraft utilizes high efficiency Applied Solar Energy Corporation (ASEC) GaAs/Ge space solar cells. The cells have been provided by the Air Force through the ManTech Office.
Technical Paper

Ice-Crystal Icing Accretion Studies at the NASA Propulsion Systems Laboratory

2019-06-10
2019-01-1921
This paper describes an ice-crystal icing experiment conducted at the NASA Propulsion System Laboratory during June 2018. This test produced ice shape data on an airfoil for different test conditions similar to those inside the compressor region of a turbo-fan jet engine. Mixed-phase icing conditions were generated by partially freezing out a water spray using the relative humidity of flow as the primary parameter to control freeze-out. The paper presents the ice shape data and associated conditions which include pressure, velocity, temperature, humidity, total water content, melt ratio, and particle size distribution. The test featured a new instrument traversing system which allowed surveys of the flow and cloud. The purpose of this work was to provide experimental ice shape data and associated conditions to help develop and validate ice-crystal icing accretion models.
Technical Paper

Icing Physics Studies Using the 3D SIDRM Test Article: Aerodynamic and Supercooled Liquid Icing Analysis

2023-06-15
2023-01-1399
In-flight icing is an important safety issue and is a factor that affects aircraft design and performance. Newer regulations are driving a need for improvements in airframe and engine icing simulation capability. Experimental data is required for development of icing physics models and simulation validation. To that end, this paper presents the analysis of the supercooled liquid icing data subset from tests conducted in 2022 at the NASA Icing Research Tunnel that studied both supercooled water and ice-crystal icing. The test article that was utilized replicated 3D geometrical features of an inter-compressor duct and strut region of a turbofan engine. The surfaces of the Simulated Inter-compressor Duct Research Model (SIDRM) can be heated to simulate the warm surfaces of the turbofan inter-compressor duct.
Journal Article

Influence of Freestream Temperature on Ice Accretion Roughness

2019-06-10
2019-01-1993
The influence of freestream static temperature on roughness temporal evolution and spatial variation was investigated in the Icing Research Tunnel (IRT) at NASA Glenn Research Center. A 53.34 cm (21-in.) NACA 0012 airfoil model and a 152.4 cm (60-in.) HAARP-II business jet airfoil model were exposed to Appendix C clouds for fixed exposure times and thus fixed ice accumulation parameter. For the base conditions, the static temperature was varied to produce different stagnation point freezing fractions. The resulting ice shapes were then scanned using a ROMER Absolute Arm system and analyzed using the self-organizing map approach of McClain and Kreeger. The ice accretion prediction program LEWICE was further used to aid in interrogations of the ice accretion point clouds by using the predicted surface variations of local collection efficiency.
Technical Paper

Overview of Icing Physics Relevant to Scaling

2003-06-16
2003-01-2130
An understanding of icing physics is required for the development of both scaling methods and ice-accretion prediction codes. This paper gives an overview of our present understanding of the important physical processes and the associated similarity parameters that determine the shape of Appendix C ice accretions. For many years it has been recognized that ice accretion processes depend on flow effects over the model, on droplet trajectories, on the rate of water collection and time of exposure, and, for glaze ice, on a heat balance. For scaling applications, equations describing these events have been based on analyses at the stagnation line of the model and have resulted in the identification of several non-dimensional similarity parameters. The parameters include the modified inertia parameter of the water drop, the accumulation parameter and the freezing fraction. Other parameters dealing with the leading-edge heat balance have also been used for convenience.
Technical Paper

Review of Role of Icing Feathers in Ice Accretion Formation

2007-09-24
2007-01-3294
This paper presents a review of our current experimental and theoretical understanding of icing feathers and the role that they play in the formation of ice accretions. It covers the following areas: a short review of past research work related to icing feathers; a discussion of the physical characteristics and terminology used in describing icing feathers; the presence of feathers on ice accretions formed in unswept airfoils, especially at SLD conditions; the role that icing feathers play in the formation of ice accretion shapes on swept wings; the formation of icing feathers from roughness elements; theoretical considerations regarding feather formation, feather interaction to form complex icing structures, the role of film dynamics in the formation of roughness elements and the formation of feathers. Hypotheses related to feather formation and feather growth are discussed.
Technical Paper

Scaling Evaluation of Ice-Crystal Icing on a Modern Turbofan Engine in PSL Using the COMDES-MELT Code

2019-06-10
2019-01-1920
This paper presents preliminary ice-crystal icing (ICI) altitude scaling evaluation results of a Honeywell Uncertified Research Engine (HURE) that was tested in the NASA Glenn Research Center Propulsion Systems Laboratory (PSL) during January of 2018. This engine geometry features a hidden core design to keep the core less exposed. The engine was fitted with internal video cameras to observe various ice buildup processes at multiple selected locations within the engine core flow path covering the fan stator, the splitter-lip/shroud/strut, and the high pressure compressor (HPC) variable inlet guide vane (IGV) regions. The potential ice accretion risk was pre-determined to occur by using NASA’s in-house 1D Engine Icing Risk assessment code, COMDES-MELT. The code was successful in predicting the risk of ice accretion in adiabatic regions like the fan-stator of the HURE at specific engine operating points.
Technical Paper

The Influence of SLD Drop Size Distributions on Ice Accretion in the NASA Icing Research Tunnel

2019-06-10
2019-01-2022
An ice shape database has been created to document ice accretions on a 21-inch chord NACA0012 model and a 72-inch chord NACA 23012 airfoil model resulting from an exposure to a Supercooled Large Drop (SLD) icing cloud with a bimodal drop size distribution. The ice shapes created were documented with photographs, laser scanned surface measurements over a section of the model span, and measurement of the ice mass over the same section of each accretion. The icing conditions used in the test matrix were based upon previously used conditions on the same models but with an alternate approach to evaluation of drop distribution effects. Ice shapes resulting from the bimodal distribution as well as from equivalent monomodal drop size distributions were obtained and compared.
X