Refine Your Search

Topic

Search Results

Technical Paper

A 3D User and Maintenance Manual for UAVs and Commercial Aircrafts Based on Augmented Reality

2015-09-15
2015-01-2473
Traditional User/Maintenance Manuals provide useful information when dealing with simple machines. However, when dealing with complex systems of systems and highly miniaturized technologies, like UAVs, or with machines with millions of parts, a commercial aircraft is a case in point, new technologies taking advantage of Augmented Reality can rapidly and effectively support the maintenance operations. This paper presents a User/Maintenance Manual based on Augmented Reality to help the operator in the detection of parts and in the sequence to be followed to assemble/disassemble systems and subsystems. The proposed system includes a handheld device and/or an head mounted display or special goggles, to be used by on-site operators, with software management providing data fusion and overlaying traditional 2D user/maintenance manual information with an augmented reality software and appropriate interface.
Technical Paper

A Mesh Based Approach for Unconventional Unmanned Airship Added Masses Computation

2013-09-17
2013-01-2191
Added masses computation is a crucial aspect to be considered when the density of a body moving in a fluid is comparable to the density of the fluid displaced: added mass can be defined as the inertia added to a system because an accelerating or decelerating body displaces some volume of neighboring fluid as it moves through it. The motion of vehicles like airships and ships can be addressed only by keeping into account the effect of added masses, while in case of aircrafts and helicopters this contribution is usually neglected. Lighter Than Air flight simulation, unmanned airships flight control system, airships flight dynamics are typical applications in which added masses are fundamental to achieve an effective and realistic modeling. A panel based method using the mesh of an airship external shape is developed to account for the added massed.
Technical Paper

A Simulation-Based Comparison of Different Power Split Configurations with Respect to the System Efficiency

2012-04-16
2012-01-0438
In power-split configuration, the input power is split into two parts, one of which is transmitted from the internal combustion engine through one or more planetary gear(s) to the wheels. The other part is generated as electricity and passes through an electrical variator to assist the driving torque. The latter has the characteristic of poor efficiency. In this simulation study, a comparison among the input power-split, compound power-split, and two mode power-split are discussed. Output power-split is not mentioned in this paper due to its limited applicability in specific vehicles. The idea of selection of the electrical machines is explained: the speed and torque of electrical machines was taken into consideration for the required transmission ratios spread.
Technical Paper

Airship and Hot Air Balloon Real Time Envelope Shape Prediction through a Cloth Simulation Technique

2015-09-15
2015-01-2578
The flight simulation of airships and hot air balloons usually considers the envelope geometry as a fixed shape, whose volume is eventually reduced by ballonets. However, the dynamic pressure or helium leaks in airships, and the release of air to allow descent in hot air balloons can significantly change the shape of the envelope leading to potential dangerous situations. In fact, in case of semi-rigid and non-rigid airships a reduction in envelope internal pressure can reduce the envelope bending stiffness leading to the loss of the typical axial-symmetric shape. For hot air balloons thing goes even worse since the lost of internal pressure can lead to the collapsing of the balloon shape to a sort of vertically stretched geometry (similar to a torch) which is not able to sustain the attached basket and its payload.
Technical Paper

An Integrated Software Environment for UAV Missions Support

2013-09-17
2013-01-2189
This paper describes the design and development of a virtual environment conceived to support flight operations of an Unmanned Air Vehicle (UAV) used for wind mapping in the proximity of existing or planned wind farms. The virtual environment can be used in pre-flight briefings aiming to define a trajectory from a list of waypoints, to change and eventually re-plan the mission in case of intersection with no fly zones, to simulate the mission, and to preview images/videos taken from the UAV on-board cameras. During flight, the tool can be used to compute the wind speed along the trajectory by analyzing the data streaming from the UAV. The integration of Augmented Reality (AR) techniques in the flight environment provides assistance in remotely piloted landings, and allows visualizing flight and environmental information that are critical to the mission.
Technical Paper

Biosensing on the CD Microfluidic Platform with Genetically Engineered Proteins

2000-07-10
2000-01-2513
The current Si/polymeric medical diagnostic sensors that are on the market only feature a one-point calibration system [1]. Such a measurement results in less accurate sensing and more in-factory sensor rejection. The two-point calibration fluidic method introduced here will alleviate some of the shortcomings of such current miniature analytical systems. Our fluidic platform is a disposable, multi-purpose micro analytical laboratory on a compact disc (CD) [2, 3]. This system is based on the centrifugal force, in which fluidic flow can be controlled by the spinning rate of the CD and thus a whole range of fluidic functions including valving, mixing, metering, splitting, and separation can be implemented. Furthermore, optical detection such as absorption and fluorescence can be incorporated into the CD control unit to obtain signals from pre-specified positions on the disc.
Technical Paper

CFRP Crash Absorbers in Small UAV: Design and Optimization

2015-09-15
2015-01-2461
The high number of hull losses is a main concern in the UAV field, mostly due to the high cost of on-board equipment. A crashworthiness design can be helpful to control the extent and position of crash impact damage, minimizing equipment losses. However, the wide use of composite materials has recently put the accent on the lack of data about the behavior of these structures under operative loads, such as the crash conditions. This paper presents the outcome of a set of tests carried out to achieve a controlled crush of UAV structures, and to maximize the Specific Energy Absorption. In this work, a small-scale experimental test able to characterize the energy absorption of a Carbon-fiber-reinforced polymer under compression was developed introducing self-supporting sinusoidal shape specimens, which avoid the need for complex anti-buckling devices.
Technical Paper

Connected UAV and CAV Coordination for Improved Road Network Safety and Mobility

2021-04-06
2021-01-0173
Having connectivity among ground vehicles brings about benefits in fuel economy improvement, traffic mobility enhancement and undesired emission reductions. On the other hand, Unmanned Aerial Vehicles (UAV) have proven to help in getting aerial data to end users in an affordable manner. When UAVs are equipped with cameras, they can get information about the terrain they are flying over. Moreover, using Vehicle-to-Everything (V2X) communication technologies, it is possible to form a communication link between UAVs and the connected ground vehicle networks comprising of Connected and Autonomous vehicles (CAVs). To investigate and exploit the potential benefits and use cases of a broad vehicle network, a microscopic traffic simulator modified previously by our group with the addition of nearby UAVs is used to integrate simulated Connected UAVs flying above a realistic simulation of heterogeneous traffic flow containing both CAVs and non-CAVs.
Technical Paper

Customized Co-Simulation Environment for Autonomous Driving Algorithm Development and Evaluation

2021-04-06
2021-01-0111
Deployment of autonomous vehicles requires an extensive evaluation of developed control, perception, and localization algorithms. Therefore, increasing the implemented SAE level of autonomy in road vehicles requires extensive simulations and verifications in a realistic simulation environment before proving ground and public road testing. The level of detail in the simulation environment helps ensure the safety of a real-world implementation and reduces algorithm development cost by allowing developers to complete most of the validation in the simulation environment. Considering sensors like camera, LiDAR, radar, and V2X used in autonomous vehicles, it is essential to create a simulation environment that can provide these sensor simulations as realistically as possible.
Technical Paper

Design, Optimization, Performances and Flight Operation of an All Composite Unmanned Aerial Vehicle

2013-09-17
2013-01-2192
Unmanned Aerial Vehicles (UAVs) provide the ability to perform a variety of experimental tests of systems and unproven research technologies, including new autopilot systems and obstacle avoidance capabilities, without risking the lives of human pilots. This paper describes the activities of design, optimization, and flight operations of a UAV conceived at Clarkson University (USA) and equipped to perform wind speed measurements to support wind farmsite planning. The UAV design has been assisted and validated by the use of an automatic virtual environment for the assisted design of civil UAVs. This tool can be used as a “computing machine” for civil UAVs. The operator inputs the mission profile and other generic parameters and data about performance, aerodynamics, and weight breakdown are extracted. A mathematical model of the UAV for flight simulation and its dynamic computations, along with automatic drawing is also produced.
Technical Paper

Drag Evaluation of the Bellanca Skyrocket II

1977-02-01
770472
The Bellanca Skyrocket II, possessor of five world speed records, is a single engine aircraft with high performance that has been attributed to a laminar flow airfoil and an all composite structure. Utilization of composite materials in the Skyrocket II is unique since this selection was made to increase the aerodynamic efficiency of the aircraft. Flight tests are in progress to measure the overall aircraft drag and the wing section drag for comparison with the predicted performance of the Skyrocket. Initial results show the zero lift drag is indeed low, with CDO = 0.016.
Technical Paper

Efficient Electric School Bus Operations: Simulation-Based Auxiliary Load Analysis

2024-04-09
2024-01-2404
The study emphasizes transitioning school buses from diesel to electric to mitigate their environmental impact, addressing challenges like limited driving range through predictive models. This research introduces a comprehensive control-oriented model for estimating auxiliary loads in electric school buses. It begins by developing a transient thermal model capturing cabin behavior, divided into passenger and driver zones. Integrated with a control-oriented HVAC model, it estimates heating and cooling loads for desired cabin temperatures under various conditions. Real-world operational data from school bus specifications enhance the model’s practicality. The models are calibrated using experimental cabin-HVAC data, resulting in a remarkable overall Root Mean Square Error (RMSE) of 2.35°C and 1.88°C between experimental and simulated cabin temperatures.
Technical Paper

IN-FLIGHT MEASUREMENTS OF THE GA(W)-2 AERODYNAMIC CHARACTERISTICS

1977-02-01
770461
Flight tests of a new 13% General Aviation Airfoil - the GA(W)-2 - gloved full span onto the existing wing of a Beech Sundowner have generated chordwise pressure distributions and wake surveys. Section lift, drag and moment coefficients derived from these measurements verify wind tunnel data and theory predicting the performance of this airfoil. The effect of steps, rivets and surface coatings upon the drag of the GA(W)-2 was also evaluated.
Technical Paper

Image Processing Based Air Vehicles Classification for UAV Sense and Avoid Systems

2015-09-15
2015-01-2471
The maturity reached in the development of Unmanned Air Vehicles (UAVs) systems is making them more and more attractive for a vast number of civil missions. Clearly, the introduction of UAVs in the civil airspace requiring practical and effective regulation is one of the most critical issues being currently discussed. As several civil air authorities report in their regulations “Sense and Avoid” or “Detect and Avoid” capabilities are critical to the successful integration of UAV into the civil airspace. One possible approach to achieve this capability, specifically for operations beyond the Line-of-Sight, would be to equip air vehicles with a vision-based system using cameras to monitor the surrounding air space and to classify other air vehicles flying in close proximity. This paper presents an image-based application for the supervised classification of air vehicles.
Technical Paper

Miniaturized Sensor Systems for Early Fire Detection in Spacecraft

2009-07-12
2009-01-2469
A fire in spacecraft or habitat supporting NASA's Exploration mission could jeopardize the system, mission, and/or crew. Given adequate measures for fire prevention, the hazard from a fire can be significantly reduced if fire detection is rapid and occurs in the early stages of fire development. The simultaneous detection of both particulate and gaseous products has been proven to rapidly detect fires and accurately distinguish between real fires and nuisance sources. This paper describes the development status of gaseous and particulate sensor elements, integrated sensor systems, and system testing. It is concluded that while development is still necessary, the fundamental approach of smart, miniaturized, multisensor technology has the potential to significantly improve the safety of NASA space exploration systems.
Technical Paper

New Unconventional Airship Concept by Morphing the Lenticular Shape

2015-09-15
2015-01-2577
The aim of this paper is to develop a new concept of unconventional airship based on morphing a lenticular shape while preserving the volumetric dimension. Lenticular shape is known to have relatively poor aerodynamic characteristics. It is also well known to have poor static and dynamic stability after the certain critical speed. The new shape presented in this paper is obtained by extending one and reducing the other direction of the original lenticular shape. The volume is kept constant through the morphing process. To improve the airship performance, four steps of morphing, starting from the lenticular shape, were obtained and compared in terms of aerodynamic characteristics, including drag, lift and pitching moment, and stability characteristics for two different operational scenarios. The comparison of the stability was carried out based on necessary deflection angle of the part of tail surface.
Technical Paper

Predicting Aircraft Performance Degradation Due to Ice Accretion

1983-02-01
830742
An analytical method to predict the performance degradation of aircraft with ice accretion is presented. Early research on airfoil icing and the effects of ice on aircraft are reviewed. Data on the performance degradation of airfoils due to ice are presented as they apply to the aircraft performance analysis. A computer code has been written and results are discussed.
Technical Paper

Rapid Prototyping as a Tool to Support Wind Tunnel Testing of Unconventional Unmanned Airships

2013-09-17
2013-01-2193
Scaled models are often used to check the aerodynamic performance of full scale aircraft and airship concepts, which have gone through a conceptual and preliminary design process. Results from these tests can be quite useful to improve the design of unconventional airships whose aerodynamics might be quite different from classical configurations. Once the airship geometry has been defined, testing is required to acquire aerodynamic data necessary to implement the mathematical model of the airship needed by the flight control system to develop full autonomous capabilities. Rapid prototyping has the great potential of playing a beneficial role in unconventional autonomous airship design similarly to the success obtained in the design process of conventional aircrafts.
Technical Paper

Reheating and Sterilization Technology for Food, Waste and Water: Design and Development Considerations for Package and Enclosure

2005-07-11
2005-01-2926
Long-duration space missions require high-quality, nutritious foods, which will need reheating to serving temperature, or sterilization on an evolved planetary base. The package is generally considered to pose a disposal problem after use. We are in the process of development of a dual-use package wherein the food may be rapidly reheated in situ using the technology of ohmic heating. We plan to make the container reusable, so that after food consumption, the package is reused to contain and sterilize waste. This approach will reduce Equivalent System Mass (ESM) by using a compact heating technology, and reducing mass requirements for waste storage. Preliminary tests of the package within a specially-designed ohmic heating enclosure show that ISS menu item could easily be heated using ohmic heating technology. Mathematical models for heat transfer were used to optimize the layout of electrodes to ensure uniform heating of the material within the package.
Technical Paper

Smart Icing Systems for Aircraft Icing Safety

2003-06-16
2003-01-2100
Aircraft incidents and accidents in icing are often the result of degradation in performance and control. However, current ice sensors measure the amount of ice and not the effect on performance and control. No processed aircraft performance degradation information is available to the pilot. In this paper research is reported on a system to estimate aircraft performance and control changes due to ice, then use this information to automatically operate ice protection systems, provide aircraft envelope protection and, if icing is severe, adapt the flight controls. Key to such a safety system would be he proper communication to, and coordination with, the flight crew. This paper reviews the basic system concept, as well as the research conducted in three critical areas; aerodynamics and flight mechanics, aircraft control and identification, and human factors.
X