Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

A Distributed Environment for Analysis of Events Related to Range Safety

2004-11-02
2004-01-3095
This paper features a distributed environment and the steps taken to incorporate the Virtual Range model into the Virtual Test Bed (VTB) infrastructure. The VTB is a prototype of a virtual engineering environment to study operations of current and future space vehicles, spaceports, and ranges. The High-Level Architecture (HLA) is the main environment. The VTB/HLA implementation described here represents different systems that interact in the simulation of a Space Shuttle liftoff. An example implementation displays the collaboration of a simplified version of the Space Shuttle Simulation Model and a simulation of the Launch Scrub Evaluation Model.
Technical Paper

A Model-Based Fault Diagnostic and Control System for Spacecraft Power

1992-08-03
929099
This paper describes a model-based approach to diagnosing electrical faults in electrical power systems. Until recently, model-based reasoning has only been applied to physical systems with static, persistent states, and with parts whose behavior can be expressed combinatorially, such as digital circuits. Our research is one of a handful of recent efforts to apply model-based reasoning to more complex systems, those whose behavior is difficult or impossible to express combinatorially, and whose states change continuously over time. The chosen approach to representation is loosely based on the idea of the equation network proposed in [6]. This requires a more complex component and behavior model than for simpler physical devices. The resulting system is being tested on fault data from the SSM/PMAD power system breadboard being developed at NASA-MSFC [9].
Journal Article

An Architecture for Monitoring and Anomaly Detection for Space Systems

2013-09-17
2013-01-2090
Complex aerospace engineering systems require innovative methods for performance monitoring and anomaly detection. The interface of a real-time data stream to a system for analysis, pattern recognition, and anomaly detection can require distributed system architectures and sophisticated custom programming. This paper presents a case study of a simplified interface between Programmable Logic Controller (PLC) real-time data output, signal processing, cloud computing, and tablet systems. The discussed approach consists of three parts: First, the connectivity of real-time data from PLCs to the signal processing algorithms, using standard communication technologies. Second, the interface of legacy routines, such as NASA's Inductive Monitoring System (IMS), with a hybrid signal processing system. Third, the connectivity and interaction of the signal processing system with a wireless and distributed tablet, (iPhone/iPad) in a hybrid system configuration using cloud computing.
Technical Paper

Case for a Multidisciplinary Modeling Platform for Space Launch Risk Analysis

2007-09-17
2007-01-3864
With the development and licensing of inland, state-owned spaceports, and the ongoing development of several new reusable launch vehicles (RLV), the space launch industry is undergoing a significant transformation. As a result, there is a need to reevaluate current launch risk analysis methodologies and practices, which so far have revolved around the conservative casualty expectation analysis developed in the 1950s. Furthermore, an important aspect of launch risk analysis which gives rise to its complexity is its multidisciplinary nature. In analyzing such risk, the physics of and interactions between the varieties of hazards produced by launch vehicles breakups must be captured, modeled and, their effects analyzed. In this paper we discuss how a well-designed multidisciplinary modeling and analysis platform could be a significant step toward reducing the complexity just mentioned.
Technical Paper

Habitat Design Considerations for Mitigating Social Stressors in Long-Duration Spaceflight

2004-07-19
2004-01-2585
Social stressors in long-duration spaceflight (LDSF) have serious implications for crew effectiveness and mission safety. This paper reviews potential stressors and presents habitat and organizational design considerations to reduce perceived demand from social stressors in four areas: privacy and personal space, isolation, interpersonal interactions, and cultural differences. Results can serve as guidelines for the design of future LDSF missions and spacecraft, and will benefit attempts to develop an accurate model of stress in the spaceflight domain.
Journal Article

Weapon Combat Effectiveness Analytics Using Big Data and Simulations: A Literature Review

2019-03-19
2019-01-1365
The Weapon Combat Effectiveness (WCE) analytics is very expensive, time-consuming, and dangerous in the real world because we have to create data from the real operations with a lot of people and weapons in the actual environment. The Modeling and Simulation (M&S) of many techniques are used for overcoming these limitations. Although the era of big data has emerged and achieved a great deal of success in a variety of fields, most of WCE research using the Defense Modeling and Simulation (DM&S) techniques studied have considered a lot of assumptions and limited scenarios without the help of big data technologies. Furthermore, WCE analytics using previous methodologies cannot help but get the bias results. This paper reviews and combines the basic knowledge for the new WCE analytics methodology using big data and M&S to overcome these problems of bias. Then this paper reviews the general overview of WCE, DM&S, and big data.
X