Refine Your Search

Topic

Search Results

Standard

AIRCRAFT BRAKE TEMPERATURE MONITOR SYSTEMS (BTMS)

1992-06-01
HISTORICAL
AS1145A
This specification covers minimum requirements for brake temperature monitoring equipment whenever used on any type and model of civil aircraft. It shall be the responsibility of the purchaser to determine the compatibility of these requirements with the application aircraft and to specify requirements in excess of these minimums as necessary.
Standard

AUTOMATIC BRAKING SYSTEMS REQUIREMENTS

1993-04-01
HISTORICAL
ARP1907
This ARP covers the functional, design, construction, and test requirements for Automatic Braking Systems. Installation information and lessons learned are also included.
Standard

Aircraft Brake Temperature Monitor Systems (BTMS)

2016-09-14
CURRENT
AS1145C
This specification covers minimum requirements for brake temperature monitoring equipment whenever used on any type and model of civil aircraft. It shall be the responsibility of the purchaser to determine the compatibility of these requirements with the application aircraft and to specify requirements in excess of these minimums as necessary.
Standard

Aircraft Brake Temperature Monitor Systems (BTMS)

2012-05-09
HISTORICAL
AS1145B
This specification covers minimum requirements for brake temperature monitoring equipment whenever used on any type and model of civil aircraft. It shall be the responsibility of the purchaser to determine the compatibility of these requirements with the application aircraft and to specify requirements in excess of these minimums as necessary.
Standard

Aircraft Brake Temperature Monitoring

2021-10-28
CURRENT
ARP6812
This SAE Aerospace Recommended Practice (ARP) provides recommendations for the function, design, construction, and testing of an on-aircraft Brake Temperature Monitoring System (BTMS), sometimes referred to as a Brake Temperature Indication System (BTIS). NOTE: This ARP does not address: Cockpit ergonomics and Aircraft operating procedures. Various handheld methods of temperature sensing or readouts, as these are not associated with transport aircraft during normal operation. Temperature sensitive paints as a means to indicate exceedance of a landing gear axle temperature threshold due to brake temperature.
Standard

Carbon Brake Contamination

2012-05-09
HISTORICAL
AIR5490
This document provides information on contamination and its effects on brakes having carbon-carbon composite friction materials (carbon). Carbon is hygroscopic and porous, and therefore readily absorbs liquids and contaminants. Some of the contaminants can impact intended performance of the brake. This document is intended to raise awareness of the effects of carbon brake contamination and provide recommendations for its prevention. Although not addressed in this report, contaminants can cause problems with other landing system components including tires.
Standard

Carbon Brake Contamination and Oxidation

2016-04-12
CURRENT
AIR5490A
This document provides information on contamination and its effects on brakes having carbon-carbon composite friction materials (carbon). Carbon is hygroscopic and porous, and therefore readily absorbs liquids and contaminants. Some of the contaminants can impact intended performance of the brake. This document is intended to raise awareness of the effects of carbon brake contamination and provide information on industry practices for its prevention. Although not addressed in this report, contaminants can cause problems with other landing system components including tires.
Standard

Disposition of Damaged Wheels Involved in Accidents/Incidents

2020-09-17
CURRENT
ARP5600
This SAE Aerospace Recommended Practice (ARP) establishes a procedure for disposition of aircraft wheels that have been involved in accidents/incidents or have been exposed to overheat conditions or overload conditions from loss of adjacent tire pressure (paired wheels) or wheel tie bolts.
Standard

Information on Brake-By-Wire (BBW) Brake Control Systems

2013-04-22
HISTORICAL
AIR5372
A panel of the SAE A-5A Committee prepared this SAE Aerospace Information Report (AIR). The document describes the design approaches used for current applications of Brake-by-Wire (BBW) control systems that are used on commercial and military airplanes. The document also discusses the experience gained during service in the commercial and military environments, and covers system, ergonomic, hardware, and development aspects. The treatment includes the lessons that have been learned during application of the technology. Although there are a variety of approaches that have been used in the design of BBW systems, the main focus of this document is on systems that use the electro-hydraulic method of control. The overall range of implementations is briefly described in 2.3. Sections 3, 4, and 5 describe the electro-hydraulic method in detail.
Standard

Minimum Environmental Performance Standard for Parts 23, 25, 27, and 29 Aircraft Wheels Brakes, and Wheel and Brake Assemblies

2021-04-27
WIP
AS6961
This SAE Aerospace Standard (AS) prescribes the Minimum Performance Standards (MPS) for environmental conditions that wheel, brake, and wheel and brake assemblies to be used on aircraft certificated under 14 CFR Parts 23, 25, 27, and 29. The environmental requirements in this document shall be used in conjunction with other MPS defined in Technical Standard Orders for the applicable equipment.
Standard

Minimum Performance Recommendations for Part 23, 27, and 29 Aircraft Wheels, Brakes, and Wheel and Brake Assemblies

2012-07-19
CURRENT
ARP5381A
This Minimum Performance Document defines the testing required for wheels, brakes, and wheel and brake assemblies to be used on civil aircraft certified under 14 Code of Federal Regulations (CFR) Part 23, 27, and 29. Compliance with this document is recommended to assure that the equipment supplied will meet the intended design function when installed on aircraft. Compliance with this document does not constitute authorization for installation on an aircraft. The combined recommendations of this document provide an acceptable practice, but not the only practice, for obtaining authorization to apply TSO markings on the equipment.
Standard

Minimum Performance Recommendations for Part 23, 27, and 29 Aircraft Wheels, Brakes, and Wheel and Brake Assemblies

2006-03-17
HISTORICAL
ARP5381
This Minimum Performance Document defines the testing required for wheels, brakes, and wheel and brake assemblies to be used on civil aircraft certified under 14 Code of Federal Regulations (CFR) Part 23, 27, and 29. Compliance with this document is recommended to assure that the equipment supplied will meet the intended design function when installed on aircraft. Compliance with this document does not constitute authorization for installation on an aircraft. The combined recommendations of this document provide an acceptable practice, but not the only practice, for obtaining authorization to apply TSO markings on the equipment.
Standard

Minimum Performance Requirements for Transport Airplane Wheel and Brake Assemblies Using Electric Power Actuation

2012-07-11
CURRENT
AS5663A
In lieu of TSO-C135, this SAE Aerospace Standard (AS) prescribes the minimum performance standards for wheels, brakes, and wheel and brake assemblies using electric power actuation for transport category (14 CFR Part 25) airplanes. Testing is limited to that necessary to establish minimum performance related to strength, robustness, stopping capability, and energy absorption to ensure measurable, repeatable industry accepted standards for these aspects of wheel and brake performance. The test parameters associated with electric braking actuation are defined around the state of the technology at this time, typically comprised of an Electro-Mechanical Actuator (EMA) controlled by a control system delivering electric power and effecting motor control.
Standard

Minimum Performance Requirements for Transport Airplane Wheel and Brake Assemblies Using Electric Power Actuation

2012-05-09
HISTORICAL
AS5663
In lieu of TSO-C135, this SAE Aerospace Standard (AS) prescribes the minimum performance standards for wheels, brakes, and wheel and brake assemblies using electric power actuation for transport category (14 CFR Part 25) airplanes. Testing is limited to that necessary to establish minimum performance related to strength, robustness, stopping capability, and energy absorption to ensure measurable, repeatable industry accepted standards for these aspects of wheel and brake performance. The test parameters associated with electric braking actuation are defined around the state of the technology at this time, typically comprised of an Electro-Mechanical Actuator (EMA) controlled by a control system delivering electric power and effecting motor control.
X