Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

A Regional Comparison of Icing Conditions in Boundary Layer Clouds

2011-06-13
2011-38-0021
A large database is being created from icing flight programs completed by aircraft manufacturers for certification and by the NASA-Glenn Research Center for basic research. Although not yet complete, this database already provides an excellent opportunity to study aircraft icing conditions sampled in a wide variety of environments across eastern Canada and most of the United States, including Alaska. In this study, the focus is a comparison of conditions found within boundary-layer stratocumulus icing clouds over the Great Lakes, Pacific Northwest and Alaskan Interior. The clouds will be characterized in terms of temperature, liquid water content, median volumetric diameter, and drop concentration. Critical factors driving these parameters will be discussed.
Technical Paper

An Examination of Aircraft Icing Conditions Associated with Cold Fronts

2011-06-13
2011-38-0020
In the continental United States east of the Rocky Mountains cold fronts are quite common in wintertime due to the many cyclones moving through this region, and icing conditions in the vicinity of cold fronts are a major contributor to the overall occurrence of icing in the atmosphere. The conditions examined in this study will be those behind the cold front. Icing there is often found in stratocumulus clouds that form due to destabilization of the boundary layer through cold air advection and an inversion formed by subsidence aloft which caps their growth. Moist adiabatic lapse rates, small drop sizes, high drop concentrations, and moderate to high liquid water contents depending on the cloud depth often characterize these clouds.
Technical Paper

Exercising CIP Severity: An Investigation of Methodologies within the CIP Severity Algorithm

2011-06-13
2011-38-0069
The Current Icing Product (CIP) provides an hourly diagnosis of the severity of icing occurring based on multiple data sources. Pilot reports (PIREPs) and surface observations (METARs), as well as satellite, numerical weather prediction (NWP) model, radar, and lightning data are all utilized within the algorithm. The accurate identification of cloud base is a large factor in the algorithm's determination of icing severity. Current methods employ the METAR observation of ceiling to identify the cloud base over a specified area within the CIP domain. The temperature from the Rapid Update Cycle (RUC) NWP model at the height of the observed METAR ceiling can be utilized as a proxy for the amount of condensate in the cloud. The likelihood of a large amount of condensate in the identified cloud increases with increasing cloud base temperature. As the amount of liquid water diagnosed by CIP severity increases, so does the estimated icing severity.
Technical Paper

Verification of ADWICE In-Flight Icing Forecasts: Performance vs PIREPS Compared to FIP

2011-06-13
2011-38-0068
This study presents an evaluation of in-flight icing severity forecasts produced for the eastern United States for the winter 09/10 using the German ADWICE icing forecasting system. An instance of the underlying COSMO-EU 7km model was run over the eastern CONUS to produce four months worth of NWP data for the ADWICE algorithm. The generated icing fields were then verified using pilot reports (PIREPS) as “truth” data. In order to be able to characterize ADWICE performance over this non-native domain against a known quantity for this part of the world, a comparative verification was performed with the American FIP icing product over 1.5 months of data, using a unified set of observation PIREPS and forecast times. Subsequently, ADWICE forecasts were verified over the whole time period and analyzed with respect to seasonal, regional or altitude variations.
X