Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

2-Stroke High Speed Diesel Engines for Light Aircraft

2011-09-11
2011-24-0089
The paper describes a numerical study, supported by experiments, on light aircraft 2-Stroke Direct Injected Diesel engines, typically rated up to 110 kW (corresponding to about 150 imperial HP). The engines must be as light as possible and they are to be directly coupled to the propeller, without reduction drive. The ensuing main design constraints are: i) in-cylinder peak pressure as low as possible (typically, no more than 120 bar); ii) maximum rotational speed limited to 2600 rpm. As far as exhaust emissions are concerned, piston aircraft engines remain unregulated but lack of visible smoke is a customer requirement, so that a value of 1 is assumed as maximum Smoke number. For the reasons clarified in the paper, only three cylinder in line engines are investigated. Reference is made to two types of scavenging and combustion systems, designed by the authors with the assistance of state-of-the-art CFD tools and described in detail in a parallel paper.
Journal Article

CFD Analyses on 2-Stroke High Speed Diesel Engines

2011-09-11
2011-24-0016
In recent years, interest has been growing in the 2-Stroke Diesel cycle, coupled to high speed engines. One of the most promising applications is on light aircraft piston engines, typically designed to provide a top brake power of 100-200 HP with a relatively low weight. The main advantage yielded by the 2-Stroke cycle is the possibility to achieve high power density at low crankshaft speed, allowing the propeller to be directly coupled to the engine, without a reduction drive. Furthermore, Diesel combustion is a good match for supercharging and it is expected to provide a superior fuel efficiency, in comparison to S.I. engines. However, the coupling of 2-Stroke cycle and Diesel combustion on small bore, high speed engines is quite complex, requiring a suitable support from CFD simulation.
Technical Paper

Design of a Novel 2-Stroke SI Engine for Hybrid Light Aircraft

2021-09-21
2021-01-1179
The trend of powertrain electrification is quickly spreading from the automotive field into many other sectors. For ultra-light aircraft, needing a total installed propulsion power up to 150 kW, the combination of a specifically developed internal combustion engine (ICE) integrated with a state-of-the-art electric system (electric motor, inverter and battery) appears particularly promising. The dimensions and weight of ICE can be strongly reduced (downsizing), so that it can operate at higher efficiency at typical cruise conditions; a large power reserve is available for emergency maneuvers; in comparison to a full electric airplane, the hybrid powertrain makes possible to fly at zero emissions for a much longer time, or with a much heavier payload. On the other hand, the packaging of a hybrid powertrain into existing aircraft requires a specific design of the thermal engine, that must be light, compact, highly reliable and fuel efficient.
Technical Paper

Development of a Combustion System for a New Generation of 2-Stroke Spark Ignition Engines

2022-09-16
2022-24-0040
Conventional 2-Stroke Spark Ignition engines are characterized by very high power to weight ratios and low manufacturing costs, but also by very low thermal efficiencies and high pollutant emissions. The last issues can be fully addressed by adopting an external scavenging pump and a direct or semi-direct injection system. The implementation of these solutions requires a strong support from CFD simulations, in particular for the optimization of air-fuel mixing and combustion. The paper presents a theoretical study on a new 2-Stroke, three cylinders, 1.3 L, Spark Ignition engine for light aircraft. The power-unit also includes an electric motor connected in parallel with the thermal engine. The latter features a supercharger and a two-stage injection system, made up of a set of low-pressure fuel injectors installed on the transfer ports, and a high-pressure gasoline injector on the cylinder head.
Technical Paper

Port Design Criteria for 2-Stroke Loop Scavenged Engines

2016-04-05
2016-01-0610
Interest in 2-stroke engines has been recently renewed by several prototypes, developed for the automotive and/or the aircraft field. Loop scavenging, with piston controlled ports is particularly attractive, but the configurations successfully developed in the past for motorbike racing (in particular, the 125cc unit displacement, crankcase pump engines), are not suitable for automotive applications. Therefore, new criteria are necessary to address the scavenging system design of the new generation of 2-stroke automobile/aircraft engines. The paper reviews the transfer ports optimization of a loop scavenged 2-stroke cylinder, whose main parameters were defined in a previous study. The optimization has been carried by means of a parametric grid, considering 3 parameters (2 tilt angles, and the focus distance), and 3 different engine speeds (2000-3000-4000 rpm, assuming a Diesel engine). A set of scavenging CFD-3d simulations have been performed by using a customized version of KIVA-3V.
X