Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Application of FENSAP-ICE-Unsteady to Helicopter Icing

2007-09-24
2007-01-3310
The applicability of FENSAP-ICE-Unsteady to solve ice accretion on rotating helicopter blades is investigated using a two-bladed rotor and a generic cylinder, to represent a fuselage, for a forward flight test case. The unsteady rime ice accretion is simulated by coupling, at each time step, flow and water drop equations to the Messinger icing model. Mesh displacement effects are taken into account by an Arbitrary Lagrangian-Eulerian method. This new icing model is applied to rotor/fuselage flows by considering two grid domains: the first being fixed around the fuselage, and the second rotating with the blades. The gap region is stitched with tetrahedral elements to fully guarantee flow conservation.
Technical Paper

Numerical Demonstration of the Humidity Effect in Engine Icing

2019-06-10
2019-01-2015
The importance of the variation of relative humidity across turbomachinery engine components for in-flight icing is shown by numerical analysis. A species transport equation for vapor has been added to the existing CFD methodology for the simulation of ice growth and water flow on engine components that are subject to ice crystal icing. This entire system couples several partial differential equations that consider heat and mass transfer between droplets, crystals and air, adding the cooling of the air due to particle evaporation to the icing simulation, increasing the accuracy of the evaporative heat fluxes on wetted walls. Three validation cases are presented for the new methodology: the first one compares with the numerical results of droplets traveling inside an icing tunnel with an existing evaporation model proposed by the National Research Council of Canada (NRC).
X